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Abstract

This paper addresses the flight control problem of a morphing quadrotor robot in disaster rescue
and reconnaissance tasks by proposing an improved Active Disturbance Rejection Control (ADRC)
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method. A novel nonlinear function, Infal, is designed to replace the traditional fal function, enhanc-
ing the Extended State Observer’s (ESO) capability to estimate and compensate for both internal
and external disturbances, thereby improving the controller’s anti-interference performance and
response speed. Simulations conducted in the Matlab/Simulink environment demonstrate that the
proposed method effectively improves trajectory tracking accuracy, suppresses overshoot and os-
cillation, and accelerates convergence speed. The results show superior robustness and dynamic
performance compared to conventional ADRC, making it suitable for high-precision control tasks in
complex disturbance environments.
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Figure 1. Coordinate system of the variable-structure quadrotor robot
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Figure 2. Comparison of origin waveforms between fal and Infal
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Figure 3. Comparison of gain waveforms between fal and Infal
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Figure 4. Three-dimensional trajectory tracking curve

B 4. ZHEHMITIRER#ZE

)

DOI: 10.12677/m0s.2026.151017 189 e RSE TR


https://doi.org/10.12677/mos.2026.151017

ISP 7)) 3

mE 4 FoR, fEVIGELEEN B, BmTHE AVIEA B R4 S A Rz, i B 2 i) s
AR SRR . 1 B SEs R ], 51648 ADRC AEL, Bt ADRC 7EFREZH BN N, Uk
SR, RS IRG BE K, EaE R, SR SIEIERZEE N, MIAEER, AT
PREFKE S 5 RGP hatk.

K5 s, 8 X THERERZEN T, 154 ADRC 75 36.52 bk AfaAs, TMiASC# ADRC I FH
2.702 Fb, TIBT (M 45120 92%. TERERASRT, #4450 ADRC WE{H %% )y 0.305 m, it /7 %% 0.25m,
FEEIR 18%. (€ 6 KB, AL G 7 AT I FE 75 42.929 #, ot 5 R 46 2 12.909 £b, 1717 B A1 46 7.4 70%.
K 78R, 4 ADRC IEMHIRZEN 2.173m, S /EREE 2.14m, [EIRZ) 3%, SIEAAR, HIGIE T &
AR R SE 1 — 20 ShasE . Bk ADRC 7822 45 M AL 28 AL B 12 1] b R B HH R0 53 A 3 28 1k e B i 7
. ER RS SR, AE PO POE R EE . DU ISR, AR .y, z Z@EEmk
SR AE AN R 38 B P, AR E R e A, 30AE T AR KA G Bt 5 sh A& Rt Oy T i
S AN S

0.4 | | w | B uni
0.3 'Eﬂa;!
0.2(
0.1
o —
Eorr L : : : .
Oﬂz—ﬁ’ -
03/
-0.4
-0.5

-0.6 | | | |
0 50 100 150 200 250 300

Time (seconds)

1
|

Figure 5. X-direction trajectory tracking error curve
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Figure 6. Y-direction trajectory tracking error curve
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Figure 7. Z-direction trajectory tracking error curve
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Figure 8. Rolling angle trajectory tracking error curve
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Figure 9. Pitch angle trajectory tracking error curve
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Figure 10. Yaw angle trajectory tracking error curve
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