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external disturbances, are sensitive to accurate models, and face heavy online computation de-
mands, this paper proposes an integrated Fuzzy-MPC (Fuzzy Scheduling-Model Predictive Control)
scheme. The method uses an inverted pendulum model as an approximate prediction model, and
without changing the convex QP structure: 1) it constructs a risk metric based on the IMU’s attitude
error and its rate of change, continuously mapping it to the “sampling step/prediction horizon” to
achieve an adaptive prediction horizon; 2) it designs two Mamdani fuzzy controllers (displacement-
velocity and pitch angle-angular velocity) to generate error compensation coefficients, which are
injected into the rolling prediction trajectory with exponential decay to counteract model mismatch
and numerical lag. Comparative results on the MATLAB platform show that in scenarios with initial
tilt angles of 15° and 30°, compared with PD and standard MPC, Fuzzy-MPC achieves shorter stabili-
zation times and smaller displacement drift while significantly reducing the risks of constraint vio-
lations and continuous actuator saturation, demonstrating better robustness and energy efficiency.
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Figure 1. Simplified model of the bipedal wheel-legged robot
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Figure 2. Dynamics model of inverted pendulum

B 2. RISz HFRE

ST BN AR, AR A AR R ST KA M R N DRSS R R L RARWTT

7 (J—z W)Lij—(‘]—g+mw+mj~gn (—+—+m +mj (1)
r r
. (J . 1 1
o —=2+m, |-0+mgn+M | —+=|=0 2
(rZ w] 977 (L RJ ()
MRS TR R A
0 100 0
. 0 00O B
X = A X+ (3)
0 0 0 1 0
A 00O B,
J 1 1
[rvzumw +mjg JT+le+m _(L+Rj
ﬁt‘lj! Aaz—y A): _mg ’ BC:%’ Bd= o
Ju Ju Ju 2 Jw
2ty L 2t My 2+ My jmb 2t My

3. MPC #=#I75 %%t
3.1. MPC [EIE 5

MPC ZEBE F 2 A =ML O

TSR . FET bt RIS AR (WPRAS A FLId R g ek bkob e Bi2E), 7E TR P Ay
AR AR SRS BB TR AR

TRENRA : FEAS RAFERS ZI R S5 5020 5 T4 Y, 75 28 SR AR Il 3 M (M < P) i sepl 2 il 17 41

HE R R R ZE SRS\ HARRE J LU QP 571K R

REHZIE: BARFHEE T M AFSREERIZE, (2R B —MEHISEEN Au (K)o RJE7EF—
SRRERF % K+ 1, 5000 > i PRy B, )P 33k A B ST P (R A R T S A7 % F, 2 2R ot
Ak M BT, B R H R A

RIS 2, MPC I TAERFEHURERAREER %), T i, WAk, fELmARkis
WP a, s — M EHEE, RIGEREET.

DOI: 10.12677/m0s.2026.151022 235 e RSE TR


https://doi.org/10.12677/mos.2026.151022

EH, Mk

3.2. )RR O HT

2 4 MPC ™ B — M T BOE I B3 R VI3 /A B AR S JSt R G 2 R E R
I, MPC BT HHR B A S A R 2 1 R0 2 SBUSHITERESR T FE, EEIEMILES KR
[38]. 534b, HRGHEIRELER S, M AGERHR 2, MPC F5ZAEME A A (B R 1-5 2
POYRIE— A e 2R BAC IR, T FAE AR B B i I 2R . O T eI — I, 2B A AT
DALY e (0 T A UR 22 A MEE 7 T AT BE 9T
3.3. ETaEB SN EERNBIEN AL

N TR E DK MPC FEPRES) &S0 N5 TSR Z 7P J , ASCBeit 17— fE T R4 <R
JEE AR 5 1 3 AL o
331 REEERFHWESYIERY

IR P B BRI 5 X 2 4 2 BiDR 28 O 25 A 254 5 (Upright. Equilibrium) F2 B2 1) — AL VAl . &
BB IR RGBS LM MK, BIRES MRS 7 ARG, ASCHIE 1 W R S Il — A (K U PP

BEEAE
r :sat[\/[n—kJ +}{’7—kj Je[o,l], (4)
nmax a)max

KA e M @ I HIAPLER NBEWS YE L B KR MR R SR AR, A ABE R EL. IR REL
A BRPETE T

1) BREIERl: 2R UT RGN E TR (B REE), RBLT RE:HHT “SBREE” .

2) SMARERINE: MPC A B SR T A s (n =~ O)KEW . 2 r BRI, RGUTHE
LRVEDX, LR TR 1) AT % 22 S 25 N o I 5 2008 3 4 R N 20 SR A0 1 5 2R S R PR 52

3.3.2. BBEMTREMEHTMS R
HFIE RN, REDFFERFD K At MTINEKN, 735009

At = At +(1-1)" (A, —At) (5)

Nk::cﬁp(round(ka/Aq),Nmm,va) (6)

S3C R A8 2 OB 0 B e ) SR I A 7 T

R X BRI 4L 38 A T KA B BIRH(r, —> 1), At Bl T At o S NTREIN T Bk
P SO TE N, R S KA R A MR AR R

R X B ARG T TR, — O, At K, JEK T 85 BN ERa &, #8) T
MPC HI T K B, 3 PR P R A 5 . R RS B ) At I ASHG , LS BE(RATE A, 7
A7 HEFEL Y [ Ay, Aty | DR BB — B30T, SRR PR R 5 B T3 4340 4y S L K
M 15 3

EARERIR, WT RS K A RIS, BSOS R GORAHIE A, (At ) SHINHEE B, (At )
ARERHHEE. I, 5 MPC (55— B ah IR TF AT, 6 FHAR BT 5 1 At FHFHSE A 5
Bor DL IR HSRREI 1AM 3 MO TR B O 22, 0 (80 5 92 A 5. 2 ) 3 45 UL .

DOI: 10.12677/m0s.2026.151022 236 e RSE TR


https://doi.org/10.12677/mos.2026.151022

EH, Mk

34. ETHTHEERSTHBEENINERE

N T PSS MPCLE[E 5 ALE N XE LU PR 2 A5 N 5 888 TV E R 7 i, A it 17—k
TR Z SRR B IE R AL s 2R SEAEAH T T (Phase Plane) e R LS, ELZERE
MPC AU bR B h IR S BUE R Q S ABUEIERE R,

3.4.1. EHIFMET R E KRR
B, WATE LAGIIRERETE X, =[e,6] - AT A RAEMFE G, MEXTRERR

PV =%e2 . H I SO
V=eé )

AT ARE RGO R e, iR SH b oE, IV =e-é<0. ST 4T (Phase Plane) 547, &
I RGUIRZS (e, € ) RN PRI, LIRS AN & S50 it (sl 3 FTAL 4 Br).

! /
X 74 NS PS PM B
0.8 /
s k|
0.6 / \
0.5 / \
0.4 |
0.3 /
0.2 /

0.1 /

0
-10 -8 6 4 2 0 2 4 6 8 10 2%

i

Figure 3. Graph of input variable membership function
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Figure 4. Graph of output variable membership function
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Figure 5. Fuzzy control rule table
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Figure 7. Comparison of motion control among various control methods under an initial inclination angle of 15 degrees
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Figure 8. Comparison of motion control among various control methods under an initial inclination angle of 30 degrees
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