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Abstract

Aluminum alloy components face a critical challenge in precision manufacturing: their excellent
ductility leads to the formation of fine burrs at machined edges that are difficult to remove thor-
oughly, severely compromising the final part quality. Traditional robotic deburring relies on me-
chanical force without altering the material’s plastic deformation nature, resulting in suboptimal
outcomes for high-ductility materials. To address this bottleneck, this paper proposes a novel ro-
botic deburring method that integrates machine vision with low-temperature assisted machining.
This study first constructs a high-precision 2D vision system. Utilizing improved edge detection and
contour tracking algorithms, it achieves accurate identification of burr features. Innovatively, a fea-
ture classification-based path point simplification strategy is proposed, compressing the robotic
machining path data volume by approximately 80% and significantly enhancing path planning effi-
ciency. The core innovation lies in introducing a liquid nitrogen cryogenic field. Systematic mechan-
ical property tests and fracture analysis confirm that at low temperature (-196°C), the hardness of
aluminum alloy 6061 increases by 18% while its elongation decreases by 7%, and the material’s
fracture mechanism shifts from being plasticity-dominated to brittleness-dominated. This embrit-
tlement effect fundamentally changes the burr removal mechanism from “plastic tearing” to “brittle
fracture.” Experimental results demonstrate that under optimal parameters (spindle speed 14,000
rpm, feed rate 15 mm/s), the system completely eliminates edge burrs without damaging the work-
piece substrate, achieving a surface roughness of Ra 0.388 pm. This research not only provides an
efficient automated deburring process solution but also deepens the understanding of the mecha-
nisms involved in low-temperature assisted precision machining.
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Figure 1. Visual algorithm processing flowchart
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Figure 2. Improved edge detection algorithm processing flowchart
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Figure 3. Contour detection algorithm for path planning
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Figure 4. Flowchart of the contour detection algorithm
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Figure 6. Line and curve discrimination module
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Table 1. Chemical composition of Al6061
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Figure 9. Schematic of the tensile test setup
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Figure 10. Stress-Strain curves of aluminum alloy 6063 at different temperatures

10. AENEE T5REE 6061 AR f1 - METHhZk

DOI: 10.12677/mo0s.2026.151027

303

i

BE5 i A


https://doi.org/10.12677/mos.2026.151027

Mk, HHE

14 r 295 293.225 292. 542
13. 5201
13.5 290 288. 24
13. 0651
13 L 285
12. 5571 s
~ 2 280 r
S 12,5 s
~ 275
w12 b
iy B 270 |
= 115 bl
< = 265
B
11 f s 260 -
10.5 255
10 . . 250 .
WH0°C)  FUK(-68°C) RE(-196°C) iR (20°C) Tk (-68°C) WA (-196C)
g 0 wE CC)

Figure 11. Variation in tensile strength and elongation

11, SR EFIE AR

IR TARIR X 48 G G FE g, AW 50 R FH 4 B 3l W A 4 PR FE T H 0 22 = FoAS [R) A0 o (5 0L
TR BB PR AL B 30 438 J5 B EAT 4 IR FE IR . AR 2H 2 A1 150 B = A PAT IR DLOR B 8 (1 41
THATEEME . SRIRAE IR 12 FoR: EiR NEASMPIEEL N 92.3 HV; FHEERAR, HEERE -
Tby TEREIAIE(-196°C) PP 42 109 HV, B =R & NHeTHY) 18%, SEIGUER] T 45 & S (iR A
IIREE . & 13 Jviliid 4 3 3 R4 ICHE FE TR B0 IR, JE IR 32 T 0T A 2 RO Bk /IN I i v o

120 - 112
110 - 103104 106 107 199
100 -
90 -
80 -
70 -
60 -
50 -
40 -
30 -
20 -
10 -

0 -

i BE(HV)

L (20°0) UK (68°C) A (-196°C)
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Figure 19. Calibration and actual measurement error
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Figure 20. Experimental results of path planning
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Figure 21. Optical morphology of machined surface at different temperatures
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Figure 22. Surface micrograph after machining at different feed rates
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Figure 23. Surface micrographs under different feed rates
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Figure 24. Surface micrograph after machining at different rotational speeds
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Figure 25. Surface micrograph after machining at different rotational speeds
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Figure 26. Vickers hardness variation of aluminum alloy workpiece
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