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Abstract

Aiming at the problems of fuzzy defect edges, missed detection of small targets, and poor model
convergence in metal surface defect detection, an improved YOLOv12-based algorithm named SCA-
YOLO is proposed. An Edge Enhancement Convolution (EEConv) module is designed to extract defect
edge features through multi-directional differential convolution, enhancing the model’s feature
representation capability for linear defects such as scratches and cracks. A Spatial-Channel Collab-
orative Attention (SCA) mechanism is introduced, which locates defect regions via spatial attention
and filters important features through channel attention, thereby improving the detection accuracy
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for small targets. The Wise-IoU loss function replaces the traditional CloU, utilizing its dynamic non-
monotonic focusing mechanism to balance the weights of samples of different qualities and accel-
erate model convergence. Experimental results on the NEU-DET dataset show that SCA-YOLO
achieves an mAP@0.5 of 78.9%, which is 5.7% higher than the baseline YOLOv12n, while the num-
ber of parameters increases by only 3.5%, verifying the effectiveness of the proposed method.
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Figure 1. Overall network structure of SCA-YOLO
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Figure 2. Structure of the EEConv edge enhancement convolution module
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Figure 3. Structure of the SCA spatial-channel collaborative attention mechanism
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Table 1. Results of ablation experiments

=1 HREER

R EEConv SCA Wise-loU MAP50/% SHE/M
YOLOV12n - - - 732 2.56
+EEConv \ - - 75.8 2.61
+SCA v y - 774 2.68
SCA-YOLO V V d 78.9 2.65
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Table 2. Comparison results with mainstream algorithms
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SCA-YOLO (432) 78.9 395 2.65 6.9
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Figure 4. Examples of detection results of SCA-YOLO on the NEU-DET dataset
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Table 3. Quantitative comparison of detection results on typical hard samples
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