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Abstract

To investigate the mechanical properties of alumina ceramic Triply Periodic Minimal Surface (TPMS)
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structures, this study adopts modeling and construction of solid plate structures as well as two typical
TPMS structures (Gyroid and Schwartz). Through Abaqus finite element simulation, the influence of
structure types on their elastic modulus, tensile strength, and specific strength is systematically ana-
lyzed. The results show that TPMS structures exhibit significant mechanical advantages compared
with traditional solid structures. This study clarifies the influence laws of mechanical properties of
alumina ceramic TPMS structures, verifies the accuracy of the numerical model, and provides theo-
retical basis and technical support for their optimized design and engineering applications in fields
such as aerospace lightweight components and biomedical scaffolds.
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TES R PG b, = R AR /N i T A AR 1) 0% s S ——BIVPE = 42 i) v B P4 i P L
PRI ERONE, BN S BRI B R RTI[2]. W1 EES T 0, TPMS 45 R BLH BT
R G RI I 30% o AR T M ZR G MAE T RUARFAE B R RN p e, TPMS B Gl 4 i i e as,
KPP MR BB A AR 2 I FE T I RN WA, AT B TS5 M R0 55 %5 i [3]. TPMS S5 F AR
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(R () g 2 m 8, 3 FH T 3805 75 T AN 2 1) Tt e RITAEMT SR . PRZE ok DA R AR s 2 S5 Ak i B
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NP EARE R, X e N FH #RGT AR B A A2 B AL RIS AR H T s R [8]. Ak ERp R L A
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T ZI IR R I AN AR RETE T .
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F 375 UCEC AR HE B A B 5 H5ahs 4% .

DOI: 10.12677/mo0s.2026.152033 52 RS R


https://doi.org/10.12677/mos.2026.152033
http://creativecommons.org/licenses/by/4.0/

2. MR EA*%
2.1. TPMS &#9igit 5 =42

AT T RSP R T R 1) = A SRR S i T (TPMS) A o il i ok A SCHRI) R R [ 1] [3], ik th
Schwartz (4] 1(b))~ Gyroid (& 1(c))PFh S 1) TPMS 458y 5 E@ 45 K (B 1(a) i VR ARE R R X =
Pl Mg ¥ AT E S T I FLBR AR AE IO 57 1) Ja 2 Mg, b Gyroid S5 MM F1 00 Aii B M3515),  Schwartz
SEHL e B SR BTIB LR IN S, RS AT 2 AN RIS 37 S i 75 3R o I ST RS B A 5 Ry x e 4k,
FE SRR RIC AT ILT T &, A, BRI RS RSB, N 3 x 3 x 1 mm BIFRHELE B G 42
PiE K.

Figure 1. three structures
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Table 1. Alumina ceramic material properties
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N H iy 25 (kg/m?) AR (Mpa) THFALE
P B 2 F A 3700 3.2 %103 0.23
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Figure 2. Mesh generation of the structures
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¥ x_t 5 3X% TPMS S50 5N ABAQUS i, AT A RGN g . 1 Jedb AT JLANGEE, J8
B CBHIBR/NED . “A IR 7 TR AR R I A A0/ N B AN T AR, R LT ) s s bR
HBEAT RS R4, % HE 5] TPMS Z5HIR0 8 2k, SRHT C3D10 (10 5 M YR VY THM AR BT BEAT AR 81 4, kS
JGFRE Y 0.1 mm~0.2 mm, A fR XA BT B IAFR(MAGIEAZ 2 <0.1, HICHE >0.7). mALERIIARIT
R IR R AE 20,000~160,000 2 (8], RESE TR FE AR, ZCR W 2 Fios.
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I, R TE NP, 3T TR e S AT, 16 Abaqus MIAHELAE FABE, BT LT
AR, BEHEAT S E 10 DXt A 5 51 R R EUE R 5, PRI SEAE XU 2 BT AL B T 2
2, PRI AR A A S5 i S0 RSP T X T AU S T OREE, il 30 [ 4. B S B, b4k
TN BB AT I 25 A SR AP X, B & SERR T Z X IR 2 JPIRES, Rkl 5. & 6 A
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Figure 3. Coupling constraint for the conventional structure
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Figure 4. Coupling constraint for the Schwartz structure
4. Schwartz Z5#3B & AR

DOI: 10.12677/mo0s.2026.152033 54 5 1 A


https://doi.org/10.12677/mos.2026.152033

Figure 5. Coupling constraint for the Gyroid structure
5. Gyroid MR E LR
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3.1. Mises K =B 5347
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B, X EE =R A (R B RS B SR XIS ) oA B A

S,Mises
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Figure 6. von Mises stress contour plot of the conventional model
6. LiEER Mises KL 1 =B
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RLA =B 6 B 70 B 8)MIR R T . R AR XIS 80 73 43 A 38 S = AN FE R P xf b i
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FUEREAL, HEERRN S A, w5 XIS N ) X R 3 25 57 Schwartz S5 14 )
KFEJJEIE 148,100 MPa, N Jj8EH 3 B R ERBIRY dr[a] X3, fA7E RN IR IS, (HEEAR R 7350 A7
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JIMEJT 1T, Schwartz Z544) B 2 & T Gyroid Z5 6 FIE @ 45K, EDIE 7 TPMS 2544, JuH &2 Schwartz 514,
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Figure 7. von Mises stress contour plot of the Schwartz structure
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Figure 8. von Mises stress contour plot of the Gyroid structure
8. Gyroid L5915 R Mises I 1 =&
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1(a))~ Schwartz HHEIZEHI(E 1(b))LAK Gyroid HIEZEMI(E 1(c)). =& MIAMEIL AR SR — 8 (K 5 =
Fefl 1:1:1), SRASMEMEIE NI TR, HBRITHHTE ABAQUS BEHH AT,  InEk & fF N 100 it hn
WY Z Fh 7 R B IR A g, R SE A R 5E .

Xt 2H 4584 (38 /Gyroid/Schwartz), 43 BIFEEUT BN F7 AR 2R S HUR R BE R A7 R AR K
AR AR B T B A 3

E= )

» | Q

IEEUN LRI g AR, 43 I XA B R EE . 7R IR SRS AL R, N ) 61 =760.721 MPa,
RiAZ el =0.002333, THHEAFHVERE E =326 GPa; {E Schwartz £5f#5 84, N /) 62 =767.351 MPa, [
A5 €2 =0.002365, TIEFMARE E =324 GPa; 1E Gyroid Z5HIRER R, 7)ol =3991.751 MPa A% ¢l
=0.012511, THHEAHEERE E=319 GPa.
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Figure 9. Stress-strain curve
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Ko 2R W], =M METRPEN BUY 2 RIFRIZRIEIR R, Ul WIAE 24 1l 28 Vs e A AT (AL e it
PEMAR . Schwartz A1 Gyroid £ #4) (¥ 55 AR B 7 Sl 53 SEAR S5 AR 2 0.6% A1 2.1%,  BEARAR LK L
Ny RYIER TPMS $RANEEAT LT A R [RIIN S PIBE ER HE I I G e o MHI TR A5 AN A5 258
N BERE, BB 2 1M AE R R R b, RN AR TPMS 45 #4
RFCIHE 2 fh 1 A 2 B AR D TRARFAE, 78 A A5 LASE R St A3 . Schwartz G544 1A R /g X 3 22
PR E RS ML, EVEE AR Gyroid G5 HHEAK N ) A oA s, AR ATIE S b . A L,
TPMS JUEL AN AR LA, EORFREGE SCAR SR i MR A TSR T 53 1 B 5 AR A, e
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e B HWIFERSE ; T TPMS S5 BAFAE SRR, (ELEESE i T 7 B i 2 18] B A 32 J ATy AR A - T
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A B 2R LB ARA “WUIR” K BIA R, BT R ITS 5Hrfeid, AN IRIAE S s, RIIRIR
PUNLSREE B s Gyroid S5 H4 IR ST X AR AMUE R F735 53 70 A, (5L TG B (R AR BB TGS Schwartz 1K/)N
FEGRLR R
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MR R L B v A

osp = o max @)
P
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[ 2RI AR TE, Horh Schwartz £5#4 (1 ELIR & AR, 1 osp = 148,100/3700 =0.89 MPam®/kg, Gyroid
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) RS SRR ) 44.9 F5H0 34.6 £, FUAMIER] TPMS 45040 i 1% 45 il AR 36 12 5 B8 m [ 45 /2
K, RERSTECRIIER BRI FR, KIERTHA R RS, BB T @SR WE Rl - @k
FE” P FRIERIN, Forh Schwartz 758 5 B BT FERAR, 1& 6 T A SER ) R E A5 5 17 Gyroid
IR, ARG H A TP (B 461 5 T 51 7 5 ma 87, T4 e AR e 1 il ik 25 0 B FH 7 1)
NEAEE IR B AR P R AR A, T BT 1)

MBI RS, LOBREE 1) 22 5 T G MR AT X ) 8538 SEAR S5 M I LR 281, R
BMEME TR PIRES, RAg 9 KR BAER, S8 “E& - 8E” WERA: 7 TPMS g
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e i s Gyroid S5 E 2R A EE 5], B IR H 2688 (KT Schwartz, (R3320 & -5 18 SLAA 4544,
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Table 2. Statistical data of mechanical properties for various structures
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SER T AR E (GPa) UL (MPa) L 58 FF (MPam®/kg)
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