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Abstract

This study designs a diaphragm spring clutch for unmanned helicopter engines and conducts re-
lated dynamic characteristic analyses to verify the feasibility of using diaphragm spring clutches in
unmanned helicopters. Based on the power and load requirements of a large logistics unmanned
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helicopter, the structural parameters of the diaphragm spring clutch were designed and a 3D model
was created. The 3D clutch model clutch model in SOLIDWORKS was then imported into ADAMS to
build a virtual prototype of the clutch. The dynamic characteristics of the diaphragm spring clutch
engagement process, including smoothness, impact, and friction work, were analyzed through sim-
ulation. The results show that the designed diaphragm spring clutch can complete the engagement
process within 0.15 seconds under the engine power and rotor load conditions of the unmanned
helicopter, with the driven plate quickly synchronizing with the engine speed, and the impact level
approaching zero at the later stage of engagement. The simulation methodology and results of this
study provide a reference for addressing the “efficiency-smoothness” conflict of diaphragm clutches
under high-speed conditions, and also provide data support for the subsequent design of diaphragm
spring clutch equipment for unmanned helicopters.
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Figure 1. Unmanned helicopter power transmission diagram
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A, BARRST N 280 mm x 280 mm x 52 mme.

Table 1. Input parameter table of unmanned helicopter

# 1. EAEFHMASHE

BHATR i
TNETHLE & H &/ (kg) 700
TN BT KB/ (kg) 200
TN ETHHLE E/(km/h) 120
RENHL IR HH/(N-m) 173
RANHUERKINZ/ (kw) 105
RENNL I K% 3 /(r/min) 5800
RN ER TS Th 2/ (kw) 100
R ENNL IR % B34/ (r/min) 5500
SRR Kl
TNBEFHAE € E =/ (kg) 700
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MEhsE

Figure 2. Exploded view of a diaphragm spring clutch
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Table 2. Main design parameter table of driven plate
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SR A
BB EEYE B AME D/(mm) 225

DOI: 10.12677/m0s.2026.152029 13 5 1 A


https://doi.org/10.12677/mos.2026.152029

ey

B
BB BE Fr N AZ d(mm) 150
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Figure 3. Driven disc 3D model
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Figure 4. Diagram of the operating principle of a diaphragm spring clutch. (a) Clutch

engagement schematic; (b) Clutch separation schematic
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Table 3. Quality parameter table of diaphragm spring clutch
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AL B S 4 Bl
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Figure 5. Clutch simulation model
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Table 4. Simulation parameter table of diaphragm spring clutch

T4 RRABEBARMAESESR
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G R R PR PR B 0.4
FEH#E S M Bh At 8]l P 2.8 108
KEE B P B BE R R 0.4
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Figure 6. Diaphragm spring pressure-deformation curve
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Figure 7. Pressure variation curve of the driven disc surface
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Figure 8. Driven disk speed variation curve
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Figure 9. Slide-friction power variation curve
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Figure 10. Impact variation curve
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Figure 11. Friction torque variation curve
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