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Abstract

Targeting the prevalentissues in agricultural pest detection tasks—such as high model computational
overhead, insufficient capability for small-scale object recognition, and severe interference from
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complex backgrounds—this paper proposes a lightweight object detection method named C3Ghost-
EMA YOLOvS8. Based on the YOLOv8 architecture, the proposed method introduces the GhostConv
lightweight convolution operator and the C3Ghost module to optimize the network structure. This
approach effectively reduces the model parameter size and computational complexity while main-
taining feature expression capability, thereby achieving a lightweight network structure. Further-
more, an Efficient Multi-Scale Attention (EMA) mechanism is embedded into the network neck struc-
ture. By utilizing cross-dimensional parallel interaction and multi-scale feature fusion strategies, this
mechanism enhances the model’s perception and localization capabilities for small pest targets. Ex-
perimental results on a self-constructed IP9 pest dataset demonstrate that the proposed method
achieves significant lightweighting while maintaining high detection accuracy. The model’s parame-
ter countis only 1.91 M, and the computational load is reduced to 5.7 GFLOPs, representing reductions
of approximately 39.4% and 36.0%, respectively, compared to the baseline YOLOv8 model. Mean-
while, the mAP@0.5 reaches 81.3%, an improvement of 5.9% over the original model. These experi-
mental data verify that C3Ghost-EMA YOLOv8 achieves a favorable balance between detection accu-
racy and inference efficiency, providing an effective and feasible solution for real-time intelligent ag-
ricultural pest detection in resource-constrained scenarios.
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Figure 1. Example images of some samples from the IP9 dataset
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Figure 2. Statistics of the true boundaries of targets in the IP9 dataset
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Figure 3. The overall architecture of the YOLOv8 model
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Figure 4. Structure of the Efficient Multi-Scale Attention (EMA) module
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Figure 5. Schematic diagram of the GhostConv lightweight convolution
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Figure 6. Structure of the C3Ghost module
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Figure 7. Architecture of the improved C3Ghost-EMA YOLOvVS model
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Figure 8. Test case image
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Figure 9. Comparison of feature maps before and after introducing GhostConv in the third layer of the model
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Figure 10. Comparison of feature maps before and after introducing C3Ghost in layer 6 of the model
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Figure 11. Comparison of feature maps before and after introducing EMA at the 17th layer of the model’s neck
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Figure 12. P-R curve and mAP@0.5 results of the improved model on the test set
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Figure 13. F1 score curve of the improved model
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Figure 14. Visualization of partial detection results on the IP9 test set
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Table 1. Performance comparison of different detection models on the IP9 dataset
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Model Params(M) P R mAP@0.5 GFLOPs F1
YOLOvV8 3.15 69.73 73.69 75.41 8.9 71
RepVGG 12.82 65.02 64.66 69.51 2.64 64.57

Twins-PCVT 4332 42.41 34.67 43.55 6.45 34.88

Vision Transformer 88.19 47.52 41.85 49.08 16.86 42.63

AlexNet 57.04 42.89 44.41 54.44 0.71 43.38
C3Ghost-EMA YOLOVS 1.91 72.67 77.57 81.34 5.7 76
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Table 2. Ablation study results of the impact of improvement strategies on model performance

2. PO R IRE M BRI AN H R SRR AR

Model Params(M) mAP@0.5 GFLOPs
YOLOvV8 3.15 75.4 8.9
YOLOv8 + EMA 3.01 78.8 8.3
YOLOvVS + C3Ghost 1.72 80.3 52
C3Ghost-EMA YOLOvVS 1.91 81.3 5.7
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