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Abstract

The braking performance of a brake disc is significantly affected by its material and structure. In
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order to investigate the influence law and optimize the performance, this study adopts a simulation
method combining computational fluid dynamics (CFD) and finite elements to construct a coupled
flow-heat-solid multi-physical field model for high-speed train disc brakes under emergency brak-
ing conditions. By comparing the theoretical and simulated values of Nussell number, the accuracy
of the model’s convective heat transfer coefficient prediction is verified, which lays the foundation
for the subsequent analysis. Based on the model, the influence of material factors on the braking
performance of brake discs is systematically investigated, and the performance of brake discs made
of alloy steel, mild steel and cast iron is compared. It is found that alloy steel brake discs have the
best overall performance, with their peak temperature and peak stress values lower than those of
mild steel by 8.7% and 9.5% respectively, and reaching the peak value earlier; compared with cast
iron, its advantage is more obvious. In addition, it was found that the performance difference be-
tween different materials of brake discs was significantly reduced when the grooved structure was
used. In summary, this study reveals the influence mechanism of materials on the thermal distribu-
tion of brake discs through multi-physics field coupling simulation, which provides a theoretical
basis and reference for the optimal design of brake discs.
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Figure 1. Comparison chart of theoretical calculation and sim-
ulation calculation results of Nuessel number
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Table 1. Geometric parameters of brake discs and brake pads

* 1. Bz SREEAR LTS

ZH EVLIEN
R 1A% Ry 430 mm
HIZNHL ML Row 340 mm
HIBNE AL Rin 180 mm
Hil3h At 320 mm
Hlah NAE 170 mm
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Figure 2. Grooveless structure brake disc-brake pad geometric
model diagram
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Figure 3. Groove structure brake disc-brake pad geometric model
diagram
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Figure 4. Three-dimensional model of the flow field domain
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Table 2. Air medium parameters

#z2. BENRSH
SR Hfy
IR 1.983 x 107 Pa's
SR 0.023 W/(m-k)
ER LN 287 T (kg'k)
ENEEE AR 1005 T (kg'k)

Table 3. Material parameters of alloy steel brake discs and brake pads
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WA R/ (GPa) 210 180
ARALE 0.31 0.3
EL A /(I /kg k) 462 550
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MK R EU(1/%) 128 x 107 1.5%x107°
R R F 0.28 0.8
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Figure 5. The main heat dissipation surface of the brake disc
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Figure 6. Speed map of the friction surface of the brake disc
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Figure 7. Pressure contour map of the flow channel surface of the brake disc
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Figure 8. Pressure distribution map of the friction surface of the brake disc
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Eo. #IZZ®m A, B. C=5IEE

DOI: 10.12677/mo0s.2026.152036 93 5 1 A


https://doi.org/10.12677/mos.2026.152036

Kitizg, ZFAR

4.1. FEISHRIZIERDBE S

AN W T PR AN ) G5 A4 SR IR S AT U, I Sh A T R AT E e 9), #1302
PR A AR G AR B FUH B R I =D G HE L(A, B, C)FEREAM Bt R il BE AN 7 B I 8] (14
AL FIEBEAT X T, A 10 R

300

250

50

0 1 1 1 1

0 10 20 30 40 50 60 0 10 20 30 40 50 60
IR TE)/s i [a)/s
(a) TCHESE M| BhEE (b) ¥ZRE S Zh A
Figure 10. Temperature change curves of different structural brake discs A, B, and C
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Table 4. Statistics of temperature and stress peaks of different structural brake discs
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Figure 12. Temperature variation maps of brake discs made of different materials at different times
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Figure 13. Stress variation maps of brake discs made of different materials at different times
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