Properties of Chloroprene Rubber Filled with Different Carbon Fibers before and after Hot-Oxygen Aging

Yanhong Xu*, Zaixue Wang, Guiying Zhao, Yunhui Xu

Jiangsu Rubber Recycling Engineering R&D Center, Department of Materials Engineering, Xuzhou College of Industrial Technology, Xuzhou Jiangsu

Email: *xuyanh@mail.xzcit.cn

Received: Nov. 28th, 2017; accepted: Dec. 14th, 2017; published: Dec. 25th, 2017

Abstract

The effect of carbon fibers (CF) with different contents (0, 5, 10, 15, 20 and 25 phr) on the physical and mechanical strength, and hot-oxygen aging properties of chloroprene rubber (CR) has been investigated based on CR filled with different CF (2 mm and 5 mm) in this paper. The properties of CR filled with the two types of CF varying from 0 to 25 phr have been studied in detail. The results show that CF has great influences on the properties of CR. With the increase of CF added, the Shore A hardness, modulus at 300% and tear strength all increase, while the tensile strength decreases. Especially, the filler CF makes CR have excellent anti-aging properties, and the mechanical properties of CR with different content of CF greatly increase in heat aging box for 72 h at 100°C.

Keywords

Chloroprene Rubber, Carbon Fiber, Anti-Aging, Mechanical Property

不同碳纤维填充氯丁橡胶热老化 前后的性能

徐彦红*,王再学,赵桂英,徐云慧

徐州工业职业技术学院,材料工程学院,江苏省橡胶循环利用研发中心,江苏 徐州 Email: xuyanh@mail.xzcit.cn

收稿日期: 2017年11月28日; 录用日期: 2017年12月14日; 发布日期: 2017年12月25日

*通讯作者。

文章引用: 徐彦红, 王再学, 赵桂英, 徐云慧. 不同碳纤维填充氯丁橡胶热老化前后的性能[J]. 材料科学, 2017, 7(9): 759-764. DOI: 10.12677/ms.2017.79099

摘要

以氯丁橡胶(CR)作为基料,分别以不同规格的碳纤维(CF: 2 mm、5 mm)作为填充剂,研究CF的加入对CR的物理机械性能和热空气老化性能的影响。详细研究了添加不同量(0, 5, 10, 15, 20, 25份)的两种CF(2 mm、5 mm)后CR材料的性能。结果表明CF对CR的性能具有较大的影响,随着CF填充量的增加,CR的邵氏A硬度、300%定伸应力和撕裂强度提高,而拉伸性能降低。特别是CF的填充使得CR材料具有更加优异的抗老化性能,其力学性能在100℃老化72 h后均明显增加。

关键词

氯丁橡胶,碳纤维,抗老化,力学性能

Copyright © 2017 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

Open Access

1. 前言

氯丁橡胶(CR)是一种具有极性的橡胶,其结构规整,易伸长结晶,强力很高、粘附能力好,耐油、耐热老化、耐臭氧、耐腐蚀等,且易加工、综合物理机械性能好,是一种用途极为广泛的橡胶材料[1][2][3][4]。随着科技的发展,橡胶制品的应用越来越广,对材料的综合性能要求也越来越高。因此,为了得到性能更加优异,可用于各种类型需求的新型复合功能材料,需要在现有聚合物基础上添加一些特殊材料对其改性[5][6][7][8]。碳纤维(CF)由于其除了具有一般碳材料的耐高温、耐酸性能好、耐摩擦、导电、导热、膨胀系数小等特性外,还具有纤度好、质量轻、强度高等优点,因此被广泛用于各种复合材料研究中[9][10][11]。尤其是,在橡胶行业中的应用中,碳纤维改进了橡胶制品的耐热性、回弹性及其它力学性能等,因此碳纤维在橡胶领域的应用越来越引起研究者的关注[12][13][14]。

本研究将 2 mm 和 5 mm 的 CF 分别加入 CR 母胶料配方中,详细研究填充这两种 CF 的 CR 在老化前后的物理机械性能。

2. 实验部分

2.1. 原材料及设备

原材料: CR 322 (重庆长寿捷圆化工有限公司), 硬脂酸 SA (广州市诚壹明化工有限公司), ZnO (临 沂市源泉商贸有限公司), MgO (潍坊力合粉体科技有限公司), 促进剂 DM (上海成锦化工有限公司), 促进剂 NA-22 (威海天宇新材料科技有限公司), CF (2 mm, 5 mm, 威海光威复合材料有限公司)。

设备:开炼机(XK-250,无锡市第一橡胶有限公司);平板硫化机(QLB-50D/Q,无锡市第一橡塑机械有限公司);邵尔 A 型橡胶硬度计(LX-A,江都市真威试验机械有限责任公司);电子式拉力机(JDL-2500N,江都市新真威试验机械有限公司);空气热老化试验箱(RHL-225,南京五和试验设备有限公司)。

2.2. 试样制备

实验配方(质量份)如表 1 所示, 母炼胶记为 A0, 加入不同份数的 CF (2 mm)时分别记为 A1, A2, A3, A4, A5, 加入 CF (5 mm)记为 B1, B2, B3, B4, B5。

Table 1. Formula of CR filled with CF表 1. 碳纤维填充氯丁橡胶的试验配方

试样	A0	A1/B1	A2/B2	A3/B3	A4/B4	A5/B5
CR	100	100	100	100	100	100
ZnO	5	5	5	5	5	5
MgO	4	4	4	4	4	4
SA	1	1	1	1	1	1
DM	0.5	0.5	0.5	0.5	0.5	0.5
NA-22	2	2	2	2	2	2
CF (2 mm, 5 mm)	0	5	10	15	20	25

制备过程: CR 经过塑炼、加入 MgO、SA、ZnO、DM、NA-22 进行混炼,待混炼均匀后出片,炼成母炼胶。然后在母炼胶中分别加入不同规格(2 mm,5 mm)和不同量的 CF (5,10,15,20,25),混炼下片,停放 24 h 后进行硫化,硫化条件: 温度为 170° C,硫化时间为正硫化时间(t_{90}),表压为 15 MPa。具体见工艺流程示意图(图 1)。

2.3. 性能测试

邵氏 A 型硬度按照 GB/T531.1-2008 进行测试;物理机械性能按照 GB/T528-2009 用电子式拉力机进行测试;撕裂实验依据 GB/T529-2008 测试;热老化试验在 100℃空气热老化试验箱中老化 72 h。

3. 结果与讨论

3.1. 碳纤维种类和用量对橡胶复合材料物理机械性能的影响

母炼胶中分别填充 CF (2 mm 5 mm)所得 CR 材料的邵氏硬度值见图 2,图 2(a)中 A 为 2 mm CF,可以看出随着 CF 填充量从 0 增加到 25 份,曲线 A 和曲线 B 均呈上升趋势,当 CF 填充量在 0~15 份之间填充 2 mm CF 的硬度大填充 5 mm CF 的硬度,填充量继续增大 15 份到 25 份之间,曲线 B 大于曲线 A 的值,但总体上 A 和 B 对 CR 硬度值的影响规律一致,数值相差不大。

图 3 给出了 CR 中填充 CF (2 mm, 5 mm)所得复合材料的撕裂强度(曲线 A 为 2 mm CF, B 为 5 mm),从图 3(a)中可知 CF 的添加增大了橡胶材料的撕裂强度值,而且随着碳纤维量的增加,曲线 A 填充量 5~10 份时撕裂强度增大明显,当填充量 15 份后趋于平缓,曲线 B 可以看住随着碳纤维量从 0 到 15 份增加明显,继续增大到 20 份趋于平缓,添加 25 份时撕裂强度值有所降低,从这两个曲线可知添加 CF15 份时所得复合材料的撕裂强度较高。撕裂强度的增加可能因为 CR 中填充的 CF 具有较好的纤度和强度引起的。

CF 填充剂对 CR 的拉伸性能也有明显的影响中,图 4 (曲线 A 为 2 mm CF, B 为 5 mm)给出了复合材料的拉伸性能随添加量的变化情况,从图 4(a)中可知复合材料的拉伸强度均随着碳纤维量的增加而减小,当 CF 填充 5~20 份曲线 A 降低较小,曲线 B 降低的较大,表明添加 5 mm CF 能对 CR 的拉伸强度的影响较大。

图 5(a)给出了 CF 填充量对 CR 所得 CR 的 300%定伸应力的影响(曲线 A 为 2 mm CF, B 为 5 mm), 从图 5(a)中可知随着 CF 填充量的增加,复合材料定伸应力趋于增大,当 5 mm CF 的填充量在添加 15 份时复合材料定伸应力最大,继续增加碳纤维量,定伸应力曲线稍有下降(曲线 B),但仍高于未填充 CF 的定伸应力。

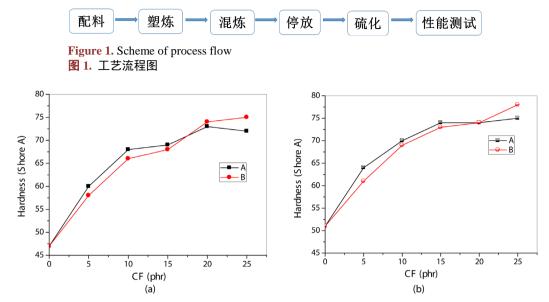


Figure 2. Effect of CF (A 2 mm, B 5 mm) on the hardness of CR before (a) and after (b) thermal aging 图 2. CF (A 2 mm, B 5 mm)填充量对 CR 邵氏 A 硬度的影响(老化前为(a), 老化后为(b))

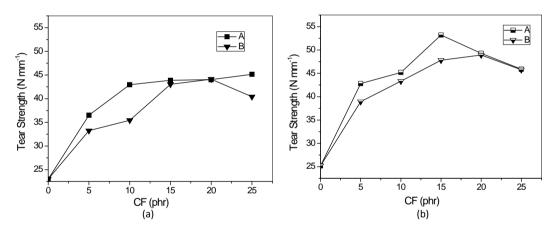


Figure 3. Effect of CF (A 2 mm, B 5 mm) on the tear strength of CR before (a) and after (b) thermal aging 图 3. CF (A 2 mm, B 5 mm)填充量对 CR 撕裂强度的影响(老化前为(a), 老化后为(b))

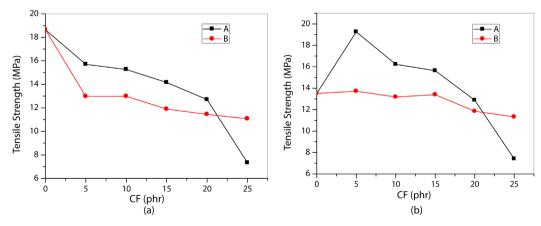


Figure 4. Effect of CF (A 2 mm, B 5 mm) on the tensile strength of CR before (a) and after (b) thermal aging 图 4. CF (A 2 mm, B 5 mm)填充量对 CR 拉伸强度的影响(老化前为(a), 老化后为(b))

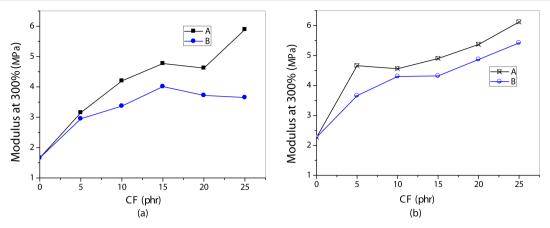


Figure 5. Effect of CF (A 2 mm, B 5 mm) on the modulus at 300% of CR before (a) and after (b) thermal aging **图** 5. CF (A 2 mm, B 5 mm)填充量对 CR 的 300%定伸应力的影响(老化前为(a), 老化后为(b))

Table 2. Changes of physical and mechanical properties of CR filled with different CF before and after hot aging 表 2. 添加不同 CF 对 CR 在热老化前后物理机械性能的变化

CF 用量 (份)	硬度(邵氏 A) (A/B)	撕裂强度 A/B (%)	拉伸强度 A/B (%)	300%定伸应力 A/B (%)
0	4	9	-28	37
5	4/3	17/17	23/6	48/24
10	2/3	5/22	6/2	9/28
15	5/5	21/11	10/13	3/8
20	1/0	19/11	1/4	16/31
25	3/3	2/13	1/2	4/48

3.2. 老化后碳纤维种类和用量对橡胶复合材料物理机械性能的影响

填充 CF 和未填充 CF 的 CR 在 100° C热空气中老化 72 h 后测试得到物理机械性能分别见图 2(b),图 3(b),图 4(b),图 5(b),物理机械性能变化见如表 2 所示。

图 2(b)中曲线 A, B 可知, 老化后的橡胶材料无论是否添加碳纤维, 其邵氏硬度大于老化前橡胶材料的硬度, 硬度增加不大, 相差最大的 5 邵氏 A (见表 2), 而且增加规律同老化前一致。

图 3(b)中可以看出,添加碳纤维的 CR 经过热老化后的撕裂强度均大于老化前的性能,而且添加了 2 mm 碳纤维 15 份时 CR 的撕裂强度增加得更为显著,增加值高达 21% (表 2)。碳纤维的加入使得橡胶老化后的撕裂强度增加,而不添加碳纤维的 CR 老化后的撕裂强度仅增加 9%,可见碳纤维的加入明显提高了 CR 抗撕裂性能。

图 4(b)给出了老化后 CR 的拉伸性能的变化,从图中曲线可见老化后未添加 CF 的 CR 拉伸性能明显减低(-28%),而填充了 5 份 2 mm CF 时拉伸强度明显提高,提高了 23% (表 2),而且填充其它份量时拉伸强度也都相对增强,填充 CF 为 10~15 份,老化后拉伸强度大于(A)或接近(B)于老化后的 CR 拉伸性能。表明 CF 的填充能够提高 CR 的拉伸强度,尤其是添加 CF5 份是,橡胶的抗老化性能优异。

图 5(b)给出了老化后 CR 的 300%定伸应力变化曲线,从图中可见,老化后橡胶材料的定伸应力均高于老化前测试结果,增值最高达 48% (表 2),填充碳纤维的 CR 的定伸应力均高于 CR 的值,与老化前的变化趋势一致。

4. 结论

- 1) 碳纤维的加入增大了 CR 的邵氏 A 硬度、撕裂强度及 300%定伸应力,而且随着碳纤维填充量的增加而增大:两种碳纤维对 CR 硬度影响的变化趋势一致,无明显区别;填充剂 2 mm CF 对 CR 的撕裂强度和定伸应力比 5 mm 的影响明显,而且当填充 CF (2 mm, 5 mm) 15 份时所得橡胶材料的撕裂强度和定伸应力均较高;随着 CF 填充量的增加,CR 的拉伸强度降低,而且 5 mm CF 对 CR 的拉伸强度降低比较多;
- 2) CF 填充大大改善了 CR 的耐热老化性能,老化后橡胶材料的邵氏 A 硬度、撕裂强度、拉伸强度、定伸应力等物理机械性能均大于老化前的相应性能;尤其是材料的撕裂强度和拉伸强度。

基金项目

江苏省科技厅自然科学基金项目(BK20161166);徐州市社会发展项目基金(KC15SH003);徐州工业职业技术学院博士重点项目(1115088801040140)江苏高校品牌专业建设工程资助项目(PPZY2015B181)。

参考文献 (References)

- [1] 翁国文,杨慧,刘琼琼,沈慧,王艳秋. 共聚氯醚再生胶/氯丁橡胶并用胶的性能[J]. 合成橡胶工业,2017,40(3): 197-201.
- [2] 孔明明, 刘浩, 王玉杰, 张振亚, 何素芹, 刘文涛, 朱诚身. 氯丁胶的研究现状与发展趋势[J]. 中国粘接剂, 2017, 26(5): 56-58.
- [3] 李进卫. 特种橡胶的性能特点及其应用[J]. 化学工业, 2014, 32(9): 38-43
- [4] Fahma, F., Hori, N., Iwata, T. and Takemura, A. (2014) Preparation and Characterization of Polychloroprene Nano-composites with Cellulose Nanofibers from Oil Palm Empty Fruit Bunches as a Nanofiller. *Journal of Applied Polymer Science*, **131**, 40159 https://doi.org/10.1002/app.40159
- [5] 孙举涛,姚彬彬,王丽丽,刘尧. 多功能橡胶助剂TPM的制备及其在溶聚丁苯橡胶中的应用[J]. 橡胶工业,2017,64(4):228-231.
- [6] 辛华, 赵星, 任庆海, 张雯汐. 改性石墨烯/天然橡胶复合材料的制备及性能[J]. 精细化工, 2017, 34(5): 513-518.
- [7] 翁国文. 橡胶材料简明读本[M]. 北京: 化学工业出版社, 2013.
- [8] 武卫莉, 王骏. 短切碳纤维/氟橡胶复合材料性能研究[J]. 弹性体, 2015, 25(2): 33-38.
- [9] 刘肖英,何雪涛,张金云,杨卫民,张阁,丁玉梅.碳纤维材料在航空轮胎上的应用,弹性体,2014,4(4):27-32.
- [10] 闫丽丽, 乔妙杰, 雷忆三, 王富强, 王东红, 陈佳. 化学镀镍碳纤维/环氧树脂复合材料电磁屏蔽性能[J]. 复合材料学报, 2013, 30(2): 44-49.
- [11] 沈典宇, 虞锦洪, 江南, 詹肇麟. 碳纤维@石墨烯/环氧树脂复合材料的制备和导热性能研究[J]. 塑料工业, 2017, 45(7): 98-102.
- [12] 张硕,程俊梅,赵树高. 沥青基短切碳纤维氧化改性及其天然橡胶复合材料的性能[J]. 合成橡胶工业, 2015, 38(2): 136-140.
- [13] 张华知,陈建,龚勇,邓乙川,王涛,谢纯. 螺旋纳米碳纤维对天然橡胶补强性能的研究[J]. 弹性体, 2014, 24(1): 6-8.
- [14] 王强, 齐英杰. 短切碳纤维与工程机械翻新轮胎胎面胶复合强化技术[J]. 中国公路学报, 2014, 27(12): 120-126.