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Abstract

A methyl orange-embedded graphitic carbon nitride (CN-MO) was synthesized via thermal copolycon-
densation using dicyandiamide and methyl orange (MO) as precursors, with the MO content system-
atically varied. The materials were characterized by XRD, FTIR, UV-Vis, XPS and PL. The results indi-
cated that compared to pristine g-C3N, (CN), CN-MO1s5 exhibited a broadened visible-light absorption
range and a notably enhanced charge separation efficiency. Photocatalytic water splitting experi-
ments demonstrated the superior hydrogen evolution performance of the MO-embedded catalysts.
Specifically, CN-MO1s achieved a hydrogen evolution rate of 858.14 umol-g-1-h-1 under visible light ir-
radiation, which is 10.96 times higher than that of CN. Furthermore, the apparent rate constant for
tetracycline degradation over CN-MO1s reached 0.01006 min-! in photocatalytic degradation tests,
representing a 2.53-fold enhancement over CN. This study provides a novel strategy for developing
highly efficient visible-light-responsive photocatalysts.
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Figure 1. XRD patterns of samples
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Figure 2. FTIR of CN and CN-MO
[ 2. CN 1 CN-MO B9 FTIR

2 Jy CN Al CN-MO & BB 2046 ], o 810 om ™! MR Sgidesst B -G R A T 4125 i R 20
1200~1700 cm ™" FEMRSCHT K VE T C-N e IMH 4R ZNFFAEAL . 1T 3000~3500 em™ X 42k P IR HSCHT X6 B - N-
H #8H1 O-H #, XJ2m THAFR IR H0 70 e[ 17] [18]. HRHE FTIR Jeukas fnr s, HEEE
IS NAREE T CN FRIRRAE IR AT 16

3.3. XPS &R o4

< 3 4 CN F1 CN-MOys ) X B TFRETE IR, M 3(a) i &R aT LA, CN Al CN-MO,s £
EhHHKRC). BEN)FEO)TCRA K. F 3(b)N C 1s modiRi &, WFEREEL) 288.06 F1284.80 eV
A RFENE, 58T N-C=N F1 C-C ##. 5 CN #Htk, CN-MO;s ) N-C=N {5 S FHAR AL, FH

DOI: 10.12677/ms.2026.161014 122 PR R


https://doi.org/10.12677/ms.2026.161014

L SE

MO AR B 57 T AR R E . N 1s XPS WK 3(c)A =ML, 25167 F2) 398.57.

399.94 F1401.14 eV 4b, *FBi C-N=C. N-(C); fI-NH ##. 5 CN #Lk, CN-MO;s ] C-N=C {55 F1 N-(C);
B AMKRE X AL R B o IXFPALFE NI R T H -5 FE R I, R BH MO PR N L F A ] CN-MOys i) =-s-=
BRI (2R . ] 3(d)N S2p M HEERIE R, 5 CNAHEL, CN-MOs Ff74E S-C 8, £ MO
FRUIHERN T g-CsNg HESE, H HAE KIS 5 575 L R EFORBE o EASE M2, £ CN-MO;s FHIL T S-0
5%, XAAEIAT MO iR FHI% L. 454 XRD Al FTIR 20 #7 il &1, A TAERIhH] 4% 1 BT

g-C3N4 °
(@) N1s (b) Cls
O1s Cls

3| eNmoy 3| enamo,

= S

& oy

= K=

£ o I CN

800 700 600 500 400 300 200 100 0 292 290 288 286 284 282 280

Binding energy (eV) Binding energy (eV)
© Nis| (@D
’:5 CN-MO,; ’;‘
= &
z 2
| =

CN
406 404 402 400 398 396 394 392 172 170 168 166 164 162 160
39 Binding energy (eV) Binding energy (eV)

Figure 3. XPS spectra of CN and CN-MOis
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Figure 4. UV-vis diffuse reflectance spectra (a) and band-gap energy (b) of CN and CN-MO
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Figure 5. PL emission spectra of CN and CN-MO1s
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Figure 6. Transient photocurrent density versus time plotted (a) and EIS Nyquist plots of CN and CN-MO:s (b)
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Figure 7. Degradation tetracycline performance of the samples
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Figure 8. Corresponding kinetics linear fittings of the samples
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Figure 10. Stability test of Hz evolution over CN-MO15s
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