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摘  要 

采用二氰二胺与甲基橙(MO)为前驱体，通过热共聚工艺制备出甲基橙嵌入的石墨相氮化碳(CN-MO)，同

时对甲基橙的含量进行了调控。通过X射线衍射、红外光谱、X射线光电子能谱、紫外–可见吸收光谱及

荧光光谱对材料进行了表征。结果表明：相较于g-C3N4 (CN)，CN-MO15的可见光响应范围变宽，同时光

生载流子分离效率显著增强。光催化分解水产氢结果表明，经甲基橙嵌入的CN展现出优异的析氢性能，

其中CN-MO15在可见光照射条件下的产氢速率达到858.14 μmol·g−1·h−1，为CN的10.96倍。光催化降解

实验表明，该催化剂对四环素的降解动力学常数为0.01006 min−1，降解速率是CN的2.53倍，该研究为

高效可见光催化剂开发提供了新途径。 
 
关键词 

g-C3N4，甲基橙，可见光催化，四环素，产氢 
 

 

Methyl Orange-Embedded g-C3N4  
for Photocatalytic Degradation  
of Tetracycline and Hydrogen  
Production 
Yue Chang, Jingwen Guo, Bowen Zhao, Yanbo Zhu, Jinhuan Zhu, Jingjing Shen,  
Yuhe Wang, Jianjun Chen∗ 
School of Chemistry and Chemical Engineering, Zhengzhou Normal University, Zhengzhou Henan  
 
Received: December 20, 2025; accepted: January 13, 2026; published: January 23, 2026   

 

 

 

*通讯作者。 

https://www.hanspub.org/journal/ms
https://doi.org/10.12677/ms.2026.161014
https://doi.org/10.12677/ms.2026.161014
https://www.hanspub.org/


常越 等 
 

 

DOI: 10.12677/ms.2026.161014 120 材料科学 
 

 
 

Abstract 
A methyl orange-embedded graphitic carbon nitride (CN-MO) was synthesized via thermal copolycon-
densation using dicyandiamide and methyl orange (MO) as precursors, with the MO content system-
atically varied. The materials were characterized by XRD, FTIR, UV-Vis, XPS and PL. The results indi-
cated that compared to pristine g-C₃N₄ (CN), CN-MO15 exhibited a broadened visible-light absorption 
range and a notably enhanced charge separation efficiency. Photocatalytic water splitting experi-
ments demonstrated the superior hydrogen evolution performance of the MO-embedded catalysts. 
Specifically, CN-MO15 achieved a hydrogen evolution rate of 858.14 μmol·g−1·h−1 under visible light ir-
radiation, which is 10.96 times higher than that of CN. Furthermore, the apparent rate constant for 
tetracycline degradation over CN-MO15 reached 0.01006 min−1 in photocatalytic degradation tests, 
representing a 2.53-fold enhancement over CN. This study provides a novel strategy for developing 
highly efficient visible-light-responsive photocatalysts.  
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1. 引言 

作为一种非金属半导体光催化材料，石墨氮化碳(g-C3N4)具有优异的光稳定性和催化活性，且制备成

本低廉，受到研究者的广泛关注[1] [2]。但其可见光吸收范围有限、层间载流子迁移效率不足的缺陷导致

其光催化效率较低[3] [4]。针对上述问题，研究者采用了形貌调控、掺杂及异质结构建等改性策略[5] [6]。
Mun 和 Park [7]通过引入 N、P、S 等非金属元素进行掺杂，优化载流子迁移路径与电子云密度分布，显

著增强了 g-C3N4 的光吸收性能与电荷分离效率。研究表明，磷掺杂不仅拓宽了 g-C3N4 的光吸收范围，更

显著促进了其光生电荷分离，实现了制氢效率的提高[8]。构筑异质结是改善 g-C3N4 性能的另一种方法，

g-C3N4 通过与 ZnO、TiO2 及 MoS2 等半导体形成异质结[9]，能有效降低光生电子空穴对的复合，进而改

善 g-C3N4 的光催化性能。将二维过渡金属碳化物 Ti3C2MXene 与 g-C3N4 构筑异质结构时，其高导电性可

有效增强光生载流子的定向迁移与空间分离效率。该复合催化剂表现出优异光解水产氢性能[10] [11]。此

外，通过热剥离工艺与表面缺陷工程的协同作用，也可同步提升材料比表面积与光捕获效率。Chen 团队

[12] [13]开发的磷掺杂结合热剥离技术，成功制备出具有高活性位点的 g-C3N4 基催化剂，该催化剂具备

良好的的光催化性能。尽管通过上述改性策略 g-C3N4 的光催化性能得到一定程度的改善，但是其在实际

应用过程中的光催化效率及稳定性仍有待提高[14]-[16]。因此，开发兼具高活性、强稳定性与低价的新型

光催化体系，是目前研究的重点。研究发现：甲基橙(MO)作为一种典型的偶氮染料，其分子结构中富含

苯环、偶氮键(−N=N−)及磺酸基团(−SO3H)，这些特征官能团不仅可以缩小材料带隙，拓宽可见光响应范

围，还具备独特的电子给体–受体特性，能增强电荷分离，此外 MO 的磺酸基团可作为电子捕获位点，

因此将 MO 嵌入的 g-C3N4 体系有望改善其光催化性能。 
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2. 实验部分 

2.1. 实验试剂 

二氰二胺、甲基橙、氯铂酸、四环素均购自上海国药化学试剂有限公司，整个实验过程中使用到的

水均为去离子水。 

2.2. 材料合成 

2.2.1. CN 的制备 
称取 3 g 二氰二胺，研磨后置于坩埚中，盖上盖子后再移入马弗炉，以 5℃·min−1 升温至 550℃后保

温 4 小时，所得样品记为 CN。 

2.2.2. CN-MO 的制备 
称取 3 g 二氰二胺与一定量甲基橙粉末，混合后研磨均匀。将混合物置于带盖坩埚，再移入马弗炉，

以 5℃·min−1 升温至 550℃后保温 4 小时，所得样品按加入量记为 CN-MOx (x = 5, 10, 15)，x 表示 MO 添

加量(mg)，分别为 5、10、15、20 mg。 

2.3. 材料表征 

采用 UItima IV 型 X-射线衍射仪对样品物相结构进行分析。用型号为 FTIR-2000 的傅里叶变换红外

光谱仪对样品官能团结构进行表征。采用美国 Thermo Scientific K-Alpha 型 X-射线光电子能谱仪对样品

的化学组成和元素价态进行分析。在 Cary-5000 型紫外–可见分光光度仪上测定样品的紫外–可见漫反射

光谱(UV-DRS)。使用 LS 50B 型荧光光谱仪和电化学工作站(CHI600E)检测样品的光生电子的分离和转移

的实际情况。 

2.4. 光催化性能表征 

2.4.1. 光催化降解四环素性能 
本研究选取四环素为目标污染物，量取 10 mL 浓度为 20 mg/L 的四环素溶液作初始反应液。随后将

100 mL 20 mg/L 的四环素溶液加入光催化反应器中，然后加入 20 mg 催化剂。经过 30 min 的暗反应后取

一次样，接着开启冷凝水和氙灯光源(模拟阳光中的可见光)。开灯后每隔 10 min 取一次样，累计完成四

次取样。将取过的六个样品按取样顺序编号后离心处理并取上清液，在四环素的最大吸收波长 360 nm 处

测定其吸光度。据朗伯比尔定律 A = εbc 计算催化剂对四环素的降解率。 

2.4.2. 光催化产氢性能 
利用中教金源公司的 CEL-SPH2N 型光解水系统对样品的产氢性能进行检测。将 10 mL 三乙醇胺和

90 mL 去离子水加入光催化产氢反应器中，并添加 395 μL 氯铂酸作为助催化剂，随后加入 50 mg 样品，

混合物搅拌半小时后，并启动真空泵约 25 min，以使整个系统保持真空环境。为了保持反应温度的恒定，

采用 6℃的恒温冷水进行冷凝处理。开启氙灯光源，经 420 nm 滤光片滤光后，每隔 1 h 检测产氢量，重

复测定 3 次。 

3. 结果与讨论 

3.1. XRD 结果分析 

利用 X-射线衍射(XRD)对 CN 及 CN-MO 的物相结构进行分析，结果如图 1 所示。从图 1(a)可以看

出，所有样品都有两个明显的衍射峰，位于 13.0˚处的衍射峰为 g-C3N4 的(100)面，归属于面内周期排布的
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三嗪结构单元。在 27.3˚处的衍射峰为 g-C3N4 的(002)面，是共轭芳香系统堆叠形成的。从图 1(b)为 1(a)的
局部放大图，从图中可以看出，与 CN 相比，CN-MO 的(002)峰略微向右偏移，表明 MO 的嵌入导致层间

距有所减小，这将更加有利于反应时催化剂的电荷转移，从而有利于提升催化剂的光催化性能。 
 

 
Figure 1. XRD patterns of samples 
图 1. 样品的 XRD 图谱 

3.2. FTIR 结果分析 

 
Figure 2. FTIR of CN and CN-MO 
图 2. CN 和 CN-MO 的 FTIR 图 

 
图 2 为 CN 和 CN-MO 的傅里叶变换红外光谱图，其中 810 cm−1 吸收峰对应七嗪环面外弯曲振动；

1200~1700 cm−1 宽吸收带来源于 C-N 杂环伸缩振动特征模式。而 3000~3500 cm−1 区域的吸收带对应于 N-
H 键和 O-H 键，这是由于催化剂表面吸附 H2O 分子而形成[17] [18]。根据 FTIR 光谱结果可知，甲基橙

的引入保留了 CN 的特征吸收峰。 

3.3. XPS 结果分析 

图 3 为 CN 和 CN-MO15 的 X 射线光电子能谱图，从图 3(a)的全谱图中可以看出，CN 和 CN-MO15 主

要由由碳(C)、氮(N)和氧(O)元素组成。图 3(b)为 C 1s 高分辨率谱图，两个样品在约 288.06 和 284.80 eV
处有特征峰，分别归属于 N-C=N 和 C-C 键。与 CN 相比，CN-MO15 的 N-C=N 信号基本保持不变，表明
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MO 修饰和热剥离后分子结构仍保持稳定。N 1s XPS 谱图(图 3(c))有三个特征峰，分别位于约 398.57、
399.94 和 401.14 eV 处，对应 C-N=C、N-(C)3 和-NH 键。与 CN 相比，CN-MO15 的 C-N=C 信号和 N-(C)3

信号向低能区位移动。这种位移应归因于电子密度增加，表明 MO 作为电子供体向 CN-MO15 中的三-s-三
嗪环(电子受体)提供电子。图 3(d)为 S 2p 高分辨率谱图，与 CN 相比，CN-MO15 中存在 S-C 键，表明 MO
成功地融入了 g-C3N4 框架，并且在热剥离后仍得以良好保留。值得注意的是，在 CN-MO15 中出现了 S-O
信号，这可能源于 MO 在高温下的氧化。结合 XRD 和 FTIR 分析可知，本工作成功制备了甲基橙嵌入的

g-C3N4。 
 

 
Figure 3. XPS spectra of CN and CN-MO15 
图 3. CN 和 CN-MO15 的 XPS 图 

3.4. 紫外–可见漫反射光谱结果分析 

通过紫外–可见漫反射光谱(UV-vis)对材料光吸收性能进行分析，结果如图 4 所示。从图 4(a)可以看

出，CN-MO 与 CN 在 200~800 nm 范围内均有光吸收性能。与 CN 相比，CN-MO 的光吸收性能均有显著

增强。图 4(b)为 CN 和 CN-MO15 的带隙图，相较于 CN (2.61 eV)，CN-MO15 (2.44 eV)带隙变窄。通过以

上分析可知，甲基橙的嵌入不仅能使 CN 的光吸收性能增强，还使其带隙变窄，有效拓展其对可见光区

域的响应范围。 

3.5. 光致发光(PL)光谱 

采用光致发光光谱(PL)对样品光生载流子分离特性进行分析，结果如图 5 所示。荧光强度越低表明
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光生载流子复合率小。从图中可以看出，CN 在 445 nm 处有很强的荧光发射峰，MO 嵌入 CN 后，发射

峰强度下降。表明经过修饰后，CN 催化剂的电荷分离效果得到显著提升，光生载流子复合率大大降低，

能产生更多的活性位点，进而有利于光催化反应的进行。 
 

 
Figure 4. UV-vis diffuse reflectance spectra (a) and band-gap energy (b) of CN and CN-MO 
图 4. CN 和 CN-MO 的紫外–可见漫反射光谱(a)及带隙图(b) 

 

 
Figure 5. PL emission spectra of CN and CN-MO15 
图 5. CN 和 CN-MO15 的 PL 发射谱图 

3.6. 电化学性能分析 

为了进一步评估材料的光生载流子分离效果，对样品进行了光电流响应与电化学阻抗谱分析。结果

如图 6 所示，图 6(a)为材料的光电流响应图，其中 CN-MO15 复合型材料的瞬态光电流密度明显高于 CN，

证明 MO 复合能有效提升载流子分离效率。图 6(b)为 CN 和 CN-MO15 电化学阻抗谱图，与 CN 相比，CN-
MO15 的奈奎斯特圆弧半径较小，表明载流子迁移阻力降低，有利于光生电子快速转移至催化剂表面参与

反应，与 PL 的结果相对应，进一步说明甲基橙的引入能抑制光生载流子的复合。 

3.7. 光催化性能分析 

通过在可见光下催化剂降解四环素和产氢活性的测试，对样品的光催化性能进行评价。图 7 为光催

化降解四环素性能图，与 CN 的降解率(15.00%)，CN-MO 对四环素的降解率均有明显的提升，其中 CN-
MO15 表现出最佳降解性能，其降解率提升至 34.30%。图 8 为光催化降解四环素动力学拟合曲线图， 
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Figure 6. Transient photocurrent density versus time plotted (a) and EIS Nyquist plots of CN and CN-MO15 (b) 
图 6. CN 和 CN-MO15 的瞬态光电流密度图(a)及阻抗图(b) 

 

 
Figure 7. Degradation tetracycline performance of the samples 
图 7. 样品的可见光降解四环素性能 

 

 
Figure 8. Corresponding kinetics linear fittings of the samples 
图 8. 样品的动力学线性拟合图 
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不同催化剂样品的反应速率常数依次为：CN (0.00397 min−1)、CN-MO5 (0.00563 min−1)、CN-MO10 (0.00962 
min−1)、CN-MO15 (0.01006 min−1)及 CN-MO20 (0.0866 min−1)。CN-MO15 的动力学常数是纯 CN 的 2.53 倍，

进一步证明了与 CN 相比，CN-MO 有更好的降解四环素的效果。 
图9为样品在可见光照射下的光催化产氢性能。从图中可以看出，与CN产氢速率(78.274 μmol·h−1·g−1)

相比，CN-MO 样品的光催化产氢速率均有所增强。其中 CN-MO15 达到了 858.14 μmol·h−1·g−1，是 CN 的

10.96 倍。此外，从光催化降解四环素和产氢性能中可以看出，当 MO 含量的过高时候，会导致其光催化

活性降低，这可能归因于过多 MO 会成为电子和空穴复合的中心。 
稳定性也是光催化剂性能的重要评价标准，因此对 CN-MO15 进行了产氢性能的循环实验，结果如图

10 所示，经过 8 次循环实验后，CN-MO15 的产氢性能并没有明显的下降，说明 CN-MO15 催化剂具有较好

的稳定性。 
 

 
Figure 9. The H2 production amount (a) and average HER(b) of samples 
图 9. 样品的光解水产氢性能(a)和产氢速率图(b) 

 

 
Figure 10. Stability test of H2 evolution over CN-MO15 
图 10. CN-MO15 的产氢稳定性测试 
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3.8. 产氢机理分析 

图 11 为其光催化产氢机理图，CN-MO 光催化材料在可见光照射下，价带上的电子吸收光能跃迁到

到导带，形成带还原活性的光生电子。随后光生电子与溶液中的质子进行还原反应，生成氢气。实验体

系中添加的三乙醇胺(TEOA)作为空穴捕获剂，选择性地与价带空穴进行氧化反应，该过程显著降低了电

子–空穴对的复合，从而维持了还原反应所需的高浓度自由电子。通过载流子传输路径的有效调控，光

催化体系实现了电子迁移效率的明显改善，最终促使光驱动析氢过程的整体性能获得明显提升。 
 

 
Figure 11. Proposed photocatalytic mechanism over CN-MO. 
图 11. CN-MO 的光催化机理图 

4. 总结 

以甲基橙与二氰二胺为原料，通过高温煅烧法合成甲基橙嵌入的 g-C3N4 光催化材料，并对甲基橙的

含量进行了调控。一系列表征结果表明：MO 的嵌入不仅能有效缩小 CN 的带隙宽度，拓展其可见光响应

范围，同时能提高光生载流子的空间分离效率。光催化性能测试结果表明，CN-MO15 具有最优催化活性，

其对四环素降解速率常数为 0.01006 min−1，是 g-C3N4 的 2.53 倍，其析氢速率达到了 858.14 μmol·g−1·h−1，

是 CN 的 10.96 倍。本研究揭示了高效复合光催化体系构筑的新方法及其作用机理，为相关领域研究提供

了重要参考。 
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