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Abstract

Aiming at the problem of multiple types of pollution and complex pollution components in power grid
insulators, a method for identifying the degree of pollution of line insulators based on a hyperspectral
imager was studied. First, hyperspectral imaging is performed on the insulator to obtain a hyperspec-
tral imager in the 400~1000 nm band, and monochromatic correction is performed; in addition, the
target area is preprocessed, Savitski-golay smoothing, logarithmic derivatives, first derivatives, etc.
Finally, an insulator pollution prediction method based on support vector machine (SVS-ICDP) and an
insulator pollution prediction model based on partial least squares regression (PLSR-ICDP) were es-
tablished. The experimental results show that the calculation results of the pollution degree predic-
tion model established using the first-order difference transformation premise method are not much
different from the actual measured values, and have high feasibility.
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Figure 1. Schematic diagram of hyperspectral acquisition platform
1. ShiERETFeTEE

3. #RATE

B 46 21 R A, BRI T m S S  2E A bR e A AN EE vk . fEILA PR BRI IR E,
FIFIGIE T SVM-ICDP 1 PLSR-ICDP #£%!, EARGFE LK 2.

SCUB U
|| wmEmRoIp || Fikkm - YT HIWALT
&R & kS T by i) EHEE

Figure 2. Method for calculating the degree of contamination of insulators
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Figure 3. Hyperspectral imager and spectral curve
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Figure 4. Spectral average of samples with degree of contamination
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Figure 5. Model establishment process
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Table 1. Classification effects of SVM-ICDP model under different preprocessing
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