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Abstract

High-strength, high-conductivity aluminum alloys are in pressing demand for critical applications
in power electronics, rail transit, and aerospace. However, a fundamental trade-off exists between
strength and electrical conductivity. To break this performance paradox, state-of-the-art research
is strategically centered on a tripartite framework: composition design, microstructure engineering,
and advanced processing. This review provides a systematic analysis of the underlying synergy—and
conflict—between strength and conductivity in Al alloys. It then elaborates on the technical pathways
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for enhancing both properties via optimized alloying and innovative thermo-mechanical processing.
Furthermore, the prevailing alloy systems are critically discussed. The review concludes by outlin-
ing the persisting challenges and future priorities in material design and manufacturing technology
for next-generation high-strength, high-conductivity aluminum alloys.
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Figure 1. Strength-electrical conductivity relationship diagram for high-strength & high-conductivity aluminum alloys
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Table 1. Comparison of mainstream high-strength, high-conductivity aluminum alloys
# 1. TREBESSFREEXTT

G WITZ PR HEEMPa) S HZE(% IACS)
FLG/Al & &1k 883 K WJE N SPS + # Ik 177 59.80
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Figure 2. Deformation strengthening and precipitation strengthening mechanisms of aluminum alloys
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Figure 3. Schematic diagram of the microstructure evolution during heat treatment of typical 6xxx aluminum alloys
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