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Abstract

To address the issues of insufficient response and poor selectivity in rutile-phase TiOz hydrogen-sen-
sitive sensors, this study developed a high-performance hydrogen-sensitive material by constructing
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a p-n heterojunction. Titanium dioxide composite powders with varying nickel oxide modification
levels (1%~8%) were synthesized via the hydrothermal method. Structural and morphological
analyses were conducted using XPS and SEM, while gas-sensing performance was evaluated through
MEMS micro-hotplate devices. The results showed that the sample modified with 2% NiO exhibited
ahydrogen response 1.5 times higher than that of rutile-phase TiOz at 391°C for 1000 ppm hydrogen,
along with excellent selectivity against interfering gases such as ethanol and CO. This research pro-
vides effective material optimization strategies for the development of high-performance hydro-
gen-sensitive sensors.
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Table 1. Reagents and their specifications involved in the work
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Figure 1. Dynamic response curves of rutile-phase TiO2 modified with different concentrations of NiO. (a) R-TiOz; (b) R-
TiO2@NiO 1%; (c) R-TiO2@NiO 2%; (d) R-TiO2@NiO 4%; (e) R-TiO2@NiO 6%; (f) R-TiO2@NiO 8%

1. REIKE NiO 18I & 4L A TiO: MBS EIZ. (a)R-TiO2; (b) R-TiO2@NiO 1%; (c) R-TiO2@NiO2%; (d)
R-TiO2@NiO 4%; (e) R-TiO2@NiO 6%; () R-TiO2@NiO 8%
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Figure 2. Comparison of gas selectivity and modified response of R-TiO2; (a) Comparison of hydrogen selectivity in R-TiOz
modified with different proportions of NiO; (b) Comparison of gas selectivity of R-TiO2 samples for different gases at 1000
ppm concentration
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ppm iR E T AR SAERNEFMEEL R
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M5 R-TiO, #f it H &0 7 (0 S B 0 M A B T 31
3.2. PHRRIE

SRR R REEEAT E544 53 BT, A RT3 NiO 21 51 R RSB B RESG SR O HLEE - 4] 3 AN A NiO
B FE (1) R-TiO, ¥3 K ¥ XRD B3k, A (R S 37E 27.4°00 B M BA s AT S04, XM Tio, 1
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Figure 3. (a) XRD patterns and (b) magnified diffraction peaks of (110) crystal planes of samples with different concentrations
of NiO modification
3. TRE NiO 4R EHE M AI(a) XRD EEH(b) (110)& E TSI A E

Table 2. Crystal plane spacing and lattice constant of samples with different NiO doping concentration

5= 2. AN[E) NiO 1&1HK B+ fmxt R B & E 8 IR A SRR B3

Sample 20 d c

R-TiO2 27.4672 3.2542 2.9483
R-TiO2@NiO 2% 27.4877 3.2413 2.9483
R-TiO2@NiO 4% 27.4263 3.2500 2.9466
R-TiO2@NiO 6% 27.3854 3.2611 2.9459
R-TiO2@NiO 8% 27.3445 3.2696 2.9444
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FIREAE . X Ti2p #UiE, R-TiO.@NiO 2% Ti 2p3/2 Fl Ti 2p1/2 145 & RES A 458.7 eV F 464.4
eV, 3 R-TiO: [] 458.5 eV f1464.2 eV 2 EARIEREH . G RENIEFEM, NiO 5 R-TiO, TEHUR i
455, Ti JA FELPR H 72 2 A, 3 /2 H T N PR HL SR A REARF I (R A6 0 A8 e 1 AN R-TiO, 7] NiO & [F] 4% %,
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£ O 1s #E, R-TiO.@NiO 2% Ti—O #M 45 G HE(529.9 eV)BSE T R-TiO, 1] 529.8 eV, X—71k
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Figure 4. Scanning electron microscopy images (a) R-TiOz; (b) R-TiO2@NiO 2%
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Figure 5. XPS spectra of TiO2 with different NiO modifications (a) Ti 2p; (b) O 1s
5. [E NiO f&1HY TiO2 89 XPS [Eli&(a) Ti2p; (b) O 1s
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