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Abstract

Developing efficient and stable non-precious metal electrocatalysts for the alkaline hydrogen evo-
lution reaction (HER) is critical, yet the reaction Kkinetics are often hindered by the sluggish water
dissociation step. To address this, we designed and synthesized a novel core-shell electrocatalyst,

XEDF: fhih. M T E SO S SN A% T 555 CoNIMoOs@Co,P [ ST AL 7). BERIEN, 2026, 16(2): 1-8.
DOI: 10.12677/ms.2026.162016


https://www.hanspub.org/journal/ms
https://doi.org/10.12677/ms.2026.162016
https://doi.org/10.12677/ms.2026.162016
https://www.hanspub.org/

fihidh

CoNiMo00+@Co:P. This material features structurally robust CONiMoO4 nanorods as the core, coated
with a shell of CozP nanosheets known for their optimized hydrogen adsorption energy and hydro-
philicity. This unique architecture leverages synergistic core-shell interactions to simultaneously
accelerate both water dissociation and hydrogen desorption. Electrochemical testing demonstrates
that the CoNiMo0O+@CozP catalyst exhibits outstanding HER performance in 1.0 M KOH, requiring
an overpotential of only 9 mV to achieve a current density of 10 mA-cm-2. This work provides an
effective core-shell engineering strategy for designing high-performance alkaline HER electrocata-
lysts.
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1. 5|15

T A BRAR IR B 2 I SR B ER, MRHR M) 0k 1 K &3 . S(H)VE N —PhRe &2 B = (1 2
REVR A, B2 — PR AR I AT P SRR YR [1]-[4]. R AR KRR HI AR O 3 2 R0 . XMEE
PR — P B &7, HeAS R as 58 BARFA[5]-[9]. Bt i Jm S HE AL T DA A iR B B A
Ko SR, A PR AR A B R = B 1 A K KBRS T e AT 1A SRR FH[10]-[14] . Bl (R ST 4R 7 R BAA Ak
AR B R AN R B AR T 4 B AT DA B 4 B 3 1 4B A 7RI [15]-[19] . 4R, anfel & B Th T AT EUR
JSL(HER) ) i 250 LA AL AT & — T Bk

S B E R E T R, 25t m AR B A [20]-[22]. i 4 8 E i ) BA B
SRk, A BT I N AR PR I B 7K [23] . 1 9% & @B (TMP)H, & Lo R 43 73 1 SRy S SRR A
THIZAMA, AR TR KAEE, 15598 7 HER BIMELIEYE[24] [25]. (H2 B —& @i S WrE A R,
DA A2 AN () 28 28 (R AR PT DARR S8 58 K R B 72 e S T 5 4 R — P i 1 e A 70 Pl 1 o PR A 2K
AR, ATCASCE AR RTEYE[26]. BN, I =4 T FeNiP/MoOx/NiMoOs, FH Fe,P-NisP, 1
FeoP/MoOy 73 5ill 1t ST HRIE IR &L - AR K [27]. FTL, SRS 66 ZO85E T IR EE T HER (118
HiEPE, B R A R T RE A LA = — AT AT S NE o« B 2% e Pl 3t 2 — P S R (AR IR B
JIHI NG . HRYE 35 B B PG (DFT) 58], NiMoO, BA L 51 HL T2 M MRS E S5 MIRE SR, (HRE
(R B 588 P AG NERAR, A T I E I AE /7, Barik, S %5 AN Co soE, WY T Ni e 7 i it
— BRI A 1 BE[28] -

WS EEMINE S — i i 5 M B BB R R, RERE AT 5 A 2 = 2 ) FELA A A I [29] o T 1%
H5RBZ AW FERS, XK R 2 ERE: iR ainyg, SGme AN TR INEE, R
A ZANRRE, e m AT BR[30]. BRIk, WA AN ZE Bt N B A B AR A & P AR K B 7 B A TR 21
PR —FPIRAA A& 1 SR o ARSI A T — o 24 (4% 5 45 F4 FEL 4K 77 (CONiIM0O 4@ CoP) s 7K )
SRS BERE, 3RTF T RN ALE . CoNiMoOs@CooP HEALFITE 1.0 M KOH HIAR R H1 I HE k(1)
HER #EALIERE, 17 9mV (15 A7 BT ATA F) 10 mA-cm 2 LR RE,  HAER AE Ak 22k i i 7
R A T e o
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2. SEIGE4Y
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Figure 1. The synthesis process for the CoNiMoO4@ Co2zP material
1. CONiMoO4@CozP # I & AL id 72

3. BRI

1 J87R7 CoNiMoOs@Co:P #4KHIA Bt #2 . Pl 2 T F 414 o 1 S B SR it 36 THI P SRR AE
Kl 2(a)F ] 2(b) AT BAREER E], NiM0O4-XHoO A& 351 3503 M AE VA AT IS B ighikad . B 2(c) Rl 2(d) &
7R T CoNiM0oOsxH,0 Ak HITESR, Co B2 5 KIANKFEARYN, AIfAER B TR A1/ Co B T4 B
NI BT, 25 NI Fl R RS 5] EE T AR ] 2(e) AT 2(F) . XFELFE CooP MITESE 45
BRI RES . 14 2(g) R 2(h) 2R T & i CoNiMoO,@Co,P #4KE, T LL & B CoNiMoO,@CoP HiITE
i NAE CoNiIM0O4xH0 4Kt EAEK T 9K AR CoP #1%E, CoNiMoOs@CooP #1454 T B4t
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44.6°, 51.8°F1 76.4° AL HISRATE 168 T KSR . CONIMoO, TSI (It fy 28.7°. 40.8°, 48°F154.3°, 5
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Figure 2. SEM images of (a), (b) NiMoOs-xH20 nanorods; (c), (d) CoNiMoO4-xH20 nanorods; (e), (f) CozP; and (g), (h)
CoNiMoOs@Co2P

2.(a), (b)NiM0oO4-xH20 #HK#%E; (c), (d) CoNiMoOsxH20 ZHK#E; (e), (F) CoP #%}; (g), (h) CoNiMoOs@CozP
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Figure 3. XRD patterns of the CoNiMoO4@Co2zP material, CozP nanorods, and CoNiMoOs nanorods
3. CoNiMoOs@Co2P #4#}, CozP #HK#EF1 CoNiMoOs 4K HEHT XRD B
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Figure 4. (a)~(d) TEM and HRTEM images of the CoNiMoOs@Co2zP material. (f)~(j) Corresponding elemental maps for Ni,

Co, Mo, P,and O
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Figure 5. (a) HER polarization curves and (b) corresponding Tafel plots for CoNiMoOs@CozP, CozP, CoNiMoO4-xH-0, and
NiM0O4'xH20 in 1.0 M KOH. (c) Electrochemical Impedance Spectroscopy. (d) Electrochemical double-layer capacitance
(Cai) for the series of catalysts. (e) Chronopotentiometry curve for the CoONiMoOs@CozP catalyst, demonstrating its long-term
stability. (f) Bar chart comparing the overpotentials required to reach current densities of 10 and 100 mA-cm™2 for all catalysts
[#] 5. CoNiMoO.@Co2P #1%4; CozP #4%}; CoNiMoOaxH20 £HK#EFN NiMoOa-xH20 #3K#E7E 1.0 M KOH # ) HER
Withzk (@), EREAFINHEKZEFERED. ZRABNIEEC. EREATINBEELENBEEER. 3
CoNiMoOs@CozP #1T TFRE MM (). LRMENFIATRAIERREZEE S AH 10 mA-cm2F0 100 mA-cm2

£ 1.0 M KOH HLfifHh, AR = s R G0 1 X 268 i () HER PERE . W1l 5(a) 27 1 %
N5 mVes I 90% M JE IR Ak 2. T DA B, 43K3h 10 mA-cm 2 [ LS IS, CoNi-
M0O.@CoP # KA 2 9 mV idHifiz, EE CooP #48H54 mV). CoNiMoO4-xH,0 44 K#E(168 mV)F1 Ni-
M0O4-xH20 #iKk#5 (211 mV) K45 %, (Kt CoNiMoOs@CooP #T &I I3 1 i « 33E— 25 43 M $iedie -t 5(F),
LN 100 mA-cm 2, CoNiMoOs@CoP #4 ¥} i HLA7 (89 mV)IE T+ CooP #44H(157 mV). CoNi-
M0O4-xH,0 #9K#5(295 mV)F1 NiM0oO,-xH,0 49K (318 mV). AL EE SRR BT LA S vk HE B i
PRI R BEN 735 . anfE 5(b)AT7n, CoNiMoOs@CoP [3EFE/R A% )y 38.5 mV-dec?, T Co.P (103.4
mV-dec ). CoNiM0oO4xH,0 (125.3 mV-dec 1) F1 NiMoO4-xH0 (153.8 mV-dec™). &% H:% 1, CoNiMoO,@Co,P
X HER BAT M POE 15 /128 I Bk B2 o 4 H v far B BH (Ret) 2 w2 HER VTR — AN B R K. W&
5(C)FT7R, TEXUEEMEILTTF, CoNiMoO,@CoP H kMK HL b PP IE 7R Ret 2 /M, XA RE
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