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摘  要 

开发高效、稳定的非贵金属电催化剂对于碱性析氢反应(HER)至关重要，但其动力学过程常受限于缓慢

的水解离步骤。本文设计并成功合成了一种新型的核壳结构电催化剂(CoNiMoO4@Co2P)，该材料以结构

稳定CoNiMoO4纳米棒为核，以具有优化氢吸附能力和亲水性的Co2P纳米片为壳。这种独特的结构旨在

通过核与壳的协同作用，同时加速水的解离和氢气的脱附过程。实验结果表明，所制备的

CoNiMoO4@Co2P催化剂在1.0 M KOH电解液中表现出卓越的HER性能，仅需9 mV的过电位即可达到10 
mA∙cm−2的电流密度。本研究为设计高性能碱性HER电催化剂提供了一种有效的核壳工程策略。 
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Abstract 
Developing efficient and stable non-precious metal electrocatalysts for the alkaline hydrogen evo-
lution reaction (HER) is critical, yet the reaction kinetics are often hindered by the sluggish water 
dissociation step. To address this, we designed and synthesized a novel core-shell electrocatalyst, 
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CoNiMoO4@Co2P. This material features structurally robust CoNiMoO4 nanorods as the core, coated 
with a shell of Co2P nanosheets known for their optimized hydrogen adsorption energy and hydro-
philicity. This unique architecture leverages synergistic core-shell interactions to simultaneously 
accelerate both water dissociation and hydrogen desorption. Electrochemical testing demonstrates 
that the CoNiMoO4@Co2P catalyst exhibits outstanding HER performance in 1.0 M KOH, requiring 
an overpotential of only 9 mV to achieve a current density of 10 mA∙cm−2. This work provides an 
effective core-shell engineering strategy for designing high-performance alkaline HER electrocata-
lysts. 
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1. 引言 

当前全球能源转型呈现从高碳到低碳，从低碳向零碳的发展趋势。氢(H2)作为一种能量密度高的零碳

能源载体，被认为是一种很有前途的可持续能源[1]-[4]。电解水裂解制氢技术已受到广泛关注。这种绿氢

技术是一种高效的制氢方法，其成本效益也更具优势[5]-[9]。贵金属基催化剂被认为是该技术的基准材

料。然而，有限的储量和高昂的成本大大阻碍了它们的实际应用[10]-[14]。最近的研究集中在开发具有成

本效益和效率的非贵金属替代品以及低贵金属负载量的催化剂[15]-[19]。然而，如何合理设计用于析氢反

应(HER)的高效电催化剂仍是一项挑战。 
过渡金属化合物的储量丰富成本低廉，是贵金属催化剂的替代品[20]-[22]。过渡金属氧化物具有较强

的亲水性，有助于反应中快速吸附水[23]。过渡金属磷化物(TMP)中，金属中心和磷分别作为氢氧根和质

子的受体，有利于快速的水解离，增强了 HER 的催化活性[24] [25]。但是单一金属化合物的活性有限，

因此复合不同类型的材料可以持续完成水解离产氢气。异质结构工程是一种调节催化剂电子性质的有效

途径，可以改善催化剂的活性[26]。肖等人，通过三步法制备了 FeNiP/MoOx/NiMoO4，其中 Fe2P-Ni5P4和

Fe2P/MoOx 分别负责快速吸氢–放氢和吸水[27]。可见，磷化物的复合有效增强了碱性环境下 HER 的催

化活性，证明构建具有不同功能的组件是一个可行的策略。掺杂异种元素也是一种改善电催化剂吸附能

力的策略。根据密度泛函理论(DFT)计算表明，NiMoO4 具有优异的电子结构和稳定的结构框架，但是它

的吸附强度 ΔGH*不理想，为了调节它的吸附能力，Barik，S 等人加入 Co 元素，调节了 Ni 的电子性质进

一步提升析氢的性能[28]。 
核壳结构作为一种由异质材料构成的独特体系，能够有效地构建高效的电化学催化界面[29]。基于核

与壳层之间的协同效应，这类结构展现出多重优势：如保护结构，增强离子和小分子对核的渗透，保护

核不受外部影响，并提高催化性能[30]。因此，将核和壳设计为具有最佳催化活性和强吸水能力的不同组

件是一种很有前途的策略。本文通过合成了一种新型的核壳结构电催化剂(CoNiMoO4@Co2P)加速水的解

离和氢气的脱附过程，提升了反应效率。CoNiMoO4@Co2P 催化剂在 1.0 M KOH 电解液中表现出卓越的

HER 催化性能，仅需 9 mV 的过电位即可达到 10 mA∙cm−2的电流密度，且在持久性电化学测试中保持了

良好的催化性能。 
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2. 实验部分 

2.1. 在泡沫镍上合成 CoNiMoO4∙xH2O 纳米棒 

首先将泡沫镍用盐酸处理，使表面清洁，然后用去离子水和乙醇超声使其完全漂洗。然后，将

NiSO4∙6H2O、CoSO4·7H2O 和 Na2MoO4∙2H2O 倒入去离子水中搅拌，直到溶液变成透明液体。接下来，将

溶液和一块泡沫镍放入不锈钢高压反应釜中，在 150℃下加热 6 小时，使 CoNiMoO4∙xH2O 纳米棒在泡沫

镍的表面均匀生长。漂洗后，并将其置于真空干燥炉中完全干燥。 

2.2. 在 CoNiMoO4∙xH2O 纳米棒上电沉积 Co LDH 

将 Co(NO3)2∙6H2O 倒入离子水中，搅拌得到紫色的透明溶液。在所得到的溶液中，以 CoNiMoO4∙xH2O
为工作电极，在 CoNiMoO4∙xH2O 纳米棒通过恒电位电沉积合成了 Co LDH。作为对比，通过上述合成方

法，再以泡沫镍为工作电极，在泡沫镍电沉积合成了 Co LDH。 

2.3. 以 CoNiMoO4∙xH2O@Co LDH 为前驱体，低温磷化合成了 CoNiMoO4@Co2P 材料 

在氮气流下，在管式炉的两侧分别放置面积 CoNiMoO4⋅xH2O@Co LDH 前驱体和 NaH2PO2粉末。然

后将管式加热炉升温至 400℃，保温 3 h，自然冷却后，制备了 CoNiMoO4@Co2P 材料。作为对比，通过

上述合成方法对制备的 Co LDH 进行了磷化，得到了典型的 Co2P 材料。 
 

 
Figure 1. The synthesis process for the CoNiMoO4@Co2P material 
图 1. CoNiMoO4@Co2P 材料的合成过程 

3. 结果与讨论 

图 1 展示了 CoNiMoO4@Co2P 材料的合成过程。图 2 利用扫描电子显微镜观察样品表面形貌特征，

图 2(a)和图 2(b)可以观察到，NiMoO4·xH2O 是均匀致密地在泡沫镍衬底上的纳米棒。图 2(c)和图 2(d)显
示了 CoNiMoO4∙xH2O 纳米棒的形貌，Co 掺杂后的纳米棒变细，可能是离子半径较小的 Co 离子部分取

代 Ni 离子时，会引入晶格收缩和局部应变引起的。根据图 2(e)和图 2(f)显示，对比样 Co2P 的形貌是均匀

的纳米片阵列。图 2(g)和图 2(h)显示了合成的 CoNiMoO4@Co2P 材料，可以发现 CoNiMoO4@Co2P 的形

貌为在 CoNiMoO4∙xH2O 纳米棒上生长了纳米片状的 Co2P 材料，CoNiMoO4@Co2P 材料结合了两种结构

具有更大的比表面积，以自支撑的 CoNiMoO4∙xH2O 纳米棒的骨架结构，更有利于反应中电荷转移。 
用 X 射线衍射仪对实验产物在泡沫镍上的相结构进行了分析。如图 3 所示，三条 X 射线衍射线的

44.6˚、51.8˚和 76.4˚处的强衍射峰属于泡沫镍。CoNiMoO4衍射峰的峰值为 28.7˚、40.8˚、48˚和 54.3˚，与

NiMoO4的标准卡(PDF#13-0128)衍射峰比，位置都向右偏移，这是因为 Co²⁺的离子半径(约 0.745 Å，高自

旋)小于 Ni2+的离子半径(约 0.830 Å，高自旋)。最后，X 射线衍射图(XRD)图谱上的衍射峰会向更高的 2θ
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角度方向发生移动(即“右移”) [31]。对比样 Co2P 为主体非晶材料，但退火时导致非晶材料 Co2P 在局部

产生了小范围的晶体结构，新生晶粒尺寸极小，衍射峰会因尺寸宽化效应而变得强度微弱，易被强非晶

背景信号掩盖，导致 XRD 图谱无明显射线衍射峰[32]。CoNiMoO4@Co2P 的衍射峰与 CoNiMoO4 的衍射

峰基本一致，但由于 CoNiMoO4复合了 Co2P 非晶材料，使 CoNiMoO4@Co2P 衍射峰强度与 CoNiMoO4相

比降低了。 
 

 
Figure 2. SEM images of (a), (b) NiMoO4·xH2O nanorods; (c), (d) CoNiMoO4∙xH2O nanorods; (e), (f) Co2P; and (g), (h) 
CoNiMoO4@Co2P 
图 2. (a)，(b) NiMoO4·xH2O 纳米棒；(c)，(d) CoNiMoO4∙xH2O 纳米棒；(e)，(f) Co2P 材料；(g)，(h) CoNiMoO4@Co2P
材料 
 

 
Figure 3. XRD patterns of the CoNiMoO4@Co2P material, Co2P nanorods, and CoNiMoO4 nanorods 
图 3. CoNiMoO4@Co2P 材料，Co2P 纳米棒和 CoNiMoO4纳米棒的 XRD 图 
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利用透射电子显微镜进一步表征了 CoNiMoO4@Co2P 材料结构，高分辨率电子显微镜图像如图 4(a)、
图 4(b)所示，生长在纳米棒上的取向各异的纳米片形成了均匀、交织的立体网络结构。图 4(c)、图 4(d)其
中 0.29 nm 的晶格间距对应于 Co2P 的(110)晶面。0.35 nm 的晶格间距对应于 NiMoO4的(110)晶面，从这

里也可以看出 Co 的掺杂并没有改变 NiMoO4 的晶格结构。此外，图 4(f)、图 4(j)显示，Ni、Co、Mo、P
和 O 元素分布在整个纳米棒上，Co、Mo 和 P 元素分布在纳米片中，这些结果证明成功地制备了

CoNiMoO4@Co2P 材料。 
 

 
Figure 4. (a)~(d) TEM and HRTEM images of the CoNiMoO4@Co2P material. (f)~(j) Corresponding elemental maps for Ni, 
Co, Mo, P, and O 
图 4. CoNiMoO4@Co2P 材料(a)~(d)的 TEM 和 HRTEM 图像。(f)~(j)为 CoNiMoO4@Co2P 材料的 Ni、Co、Mo、P 和 O
的相应元素映射 
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Figure 5. (a) HER polarization curves and (b) corresponding Tafel plots for CoNiMoO4@Co2P, Co2P, CoNiMoO4∙xH2O, and 
NiMoO4∙xH2O in 1.0 M KOH. (c) Electrochemical Impedance Spectroscopy. (d) Electrochemical double-layer capacitance 
(Cdl) for the series of catalysts. (e) Chronopotentiometry curve for the CoNiMoO4@Co2P catalyst, demonstrating its long-term 
stability. (f) Bar chart comparing the overpotentials required to reach current densities of 10 and 100 mA∙cm−2 for all catalysts 
图 5. CoNiMoO4@Co2P 材料；Co2P 材料；CoNiMoO4∙xH2O 纳米棒和 NiMoO4∙xH2O 纳米棒在 1.0 M KOH 中的 HER
极化曲线 (a)。上述催化剂的相应塔菲尔图(b)。交流阻抗谱图 (c)。上述催化剂的电化学双电层电容(d)。对

CoNiMoO4@Co2P 进行了稳定性测试(e)。上述催化剂的过电位电流密度分别为 10 mA∙cm−2和 100 mA∙cm−2 
 

在 1.0 M KOH 电解液中，用典型的三电极系统测试了这些样品的 HER 性能。如图 5(a)显示了扫描速

率为 5 mV∙s−1 的的 90%补偿后的极化曲线。可以观察到，当驱动 10 mA∙cm−2 的电流密度时，CoNi-
MoO4@Co2P 材料只需要 9 mV 过电位，比 Co2P 材料(54 mV)、CoNiMoO4·xH2O 纳米棒(168 mV)和 Ni-
MoO4·xH2O 纳米棒(211 mV)低得多，因此 CoNiMoO4@Co2P 析氢反应活性高。进一步分析数据，如图 5(f)，
当电流密度为 100 mA∙cm−2时，CoNiMoO4@Co2P 材料的过电位(89 mV)优于 Co2P 材料(157 mV)、CoNi-
MoO4·xH2O 纳米棒(295 mV)和 NiMoO4·xH2O 纳米棒(318 mV)。催化剂的塔菲尔斜率可以反映出析氢过

程的反应动力学。如图 5(b)所示，CoNiMoO4@Co2P 的塔菲尔斜率为 38.5 mV∙dec−1，优于 Co2P (103.4 
mV∙dec−1)、CoNiMoO4∙xH2O (125.3 mV∙dec−1)和 NiMoO4∙xH2O (153.8 mV∙dec−1)。结果表明，CoNiMoO4@Co2P
对 HER 具有相对快速的动力学反应过程。转移电荷电阻(Rct)也是决定 HER 活性的一个重要因素。如图

5(c)所示，在这些催化剂中，CoNiMoO4@Co2P 材料的电化学阻抗谱显示 Rct 是最小的，这也代表着
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CoNiMoO4@Co2P 材料在电极和电解液之间具有最好的电子传输速率，更有力地证明了 CoNiMoO4@Co2P
材料具有提高 HER 性能的作用。如图 5(d)，CoNiMoO4@Co2P 材料的 Cdl值为 82.72 mF∙cm−2，明显优于

Co2P 材料(36.28 mF∙cm−2)、CoNiMoO4·xH2O 纳米棒(4.32 mF∙cm−2)和 NiMoO4·xH2O 纳米棒(1.54 mF∙cm−2)。
这表明，CoNiMoO4@Co2P 材料具有较大的活化比表面积，在电化学过程中可以暴露出丰富的活性中心。

随后我们对 CoNiMoO4@Co2P 材料的稳定性进行了表征。如图 5(e)所示，CoNiMoO4@Co2P 经历 5000 次

循环后的 LSV 曲线几乎与初始的曲线一致，没有明显性能衰减。这表明 CoNiMoO4@Co2P 材料具有保持

高性能的稳定性。 

4. 结论 

本研究成功通过水热、电沉积和磷化三步法，设计并制备了一种具有异质结构壳层的核壳电催化剂

CoNiMoO4@Co2P。应用异质结构巧妙地结合了 CoNiMoO4 核和 Co2P 壳，结构增大了反应活性面积，有

助于提升反应效率。得益于其独特的结构和组分协同效应，该催化剂在碱性介质中表现出低过电位、快

速的反应动力学和出色的稳定性。这项工作为设计高效、稳定的非贵金属析氢电催化剂提供了新的思路

和有效的策略。 
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