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Abstract

As a new type of magnetic material, nano FesN has excellent magnetic properties, strong anti-oxida-
tion and wear resistance, and good mechanical properties and hardness. It is an ideal raw material
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for semiconductor electronic spin, photoelectric sensor device, and nano magnetic recording mate-
rial. At present, due to the unclear deformation and preparation mechanism on the micro-scale in
the preparation process of FesN, it is difficult to prepare large scale FesN in the laboratory. However,
the use of theoretical calculations (first principles and density functional theory) is limited by the
simulation system, and it is difficult to truly restore the physical properties of the material. Both
experimental and theoretical calculations have certain limitations. Hence, molecular dynamics method
has been used to calculate the generalized stacking fault energy curves on different faces of FesN.
The stable and unstable stacking fault energies along different directions on (001), (111), and (110)
faces have been obtained. The values and ratios of these two types of energies can be used to analyze
the energy barrier of FesN and the type of dislocation generated to lay a foundation for the analysis
of the microscopic deformation mechanism. Results show that on the (001) plane, partial disloca-
tions are easily generated along the [001] direction, while full dislocations are easily generated along
[110] direction. Partial dislocations can be generated on the (111) plane along [110] and [112] di-

rections. Full dislocations can be generated on the (110) plane along [ 110 ] direction.
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Figure 1. Crystal structure of FesN [5]
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Figure 2. Schematic showing slip on (110) plane in BCC structure, where u is the slip vector
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Figure 3. Image of slip along [001] and [110] directions on (001) plane showing by “OVITO”
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Figure 4. Generalized stacking fault energy on (001) plane; (a) shows the one along [001] direction and (b) shows the one
along [110] direction
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Figure 5. Generalized stacking fault energy on (111) plane; (a) shows the one along [110] direction and (b) shows the one
along [112] direction
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Figure 6. Generalized stacking fault energy on (110) plane; (a) shows the one along [ 001 ] direction, (b) shows the one along
[ 111 ] direction and (c) shows the one along [ 110 ] direction
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