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Abstract

A porous La-Fe bimetallic oxide adsorbent was synthesized using bagasse as a biomass template via
a hydrothermal method combined with a sacrificial templating strategy, and its structural and sur-
face properties were characterized. The material exhibited a stable perovskite structure with uni-
formly distributed La and Fe and abundant surface active sites. Batch adsorption experiments demon-
strated efficient removal of hydroxyethylidene diphosphonic acid (HEDP), with a maximum adsorp-
tion capacity of 523.1 mg/g. The adsorption process followed the Langmuir isotherm model and the
pseudo-second-order Kkinetic model. High adsorption efficiency was maintained under acidic to neu-
tral conditions, and the effect of coexisting anions was negligible. Mechanistic analysis revealed that
La-O sites and lattice oxygen dominated the adsorption process, while Fe incorporation enhanced the
adsorption activity of La sites through electronic structure regulation. This study provides a refer-
ence for the application of rare earth-transition metal synergistic adsorbents in organophosphorus
pollution control.
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1. 5|15

AHUBRRER 2 B T TR ARER[1] . A6 TR PR 255840 [2], BRIELARUE ) C-P BE5H, fE/KIAEEH
HMECAREAR, 5K IR BB AT AE A WLBRIR[3], XK AEZS 22 AR A /K o B A R, 2 5 R BR B 45
)iz R [4]

BUA A HUBRIR £ 5 B BOR A 22 TTE[5] s B B [61 M R f AL [T 55 B A — € RCR, (B
REFER . LZEM R U RSE 8], M2 T, WRFHERRAERIAE, ek mMEA T, Pl
RSN IV A RO B AR, HORBRAE T e MR RENR BT AL R OT A [9] -

Bl (La) W BRI AR L 25 I e P LA BB R AN, S A R AT LB 25 B0 TR DL R4 7 71 [10] 4R
1M, B — G B AT A7 7 LR T AR IR [ 5™ BTSRRI S AREE AN L [11] . D5k, g1
M e m @R R AWM ROIE I AT s B e [12]. Hodr, Bk(Fe) I BEIR-FE = . MUAMIRAR H AL~
e M RAF, AT IE I B R4 P R R 2 g R 42 1 e S0 PRk P O B 1 e [13]

S UL, AP BRESGE R 2 SLICHUR AR O T S (] R A2 [14] . DLARMLER S iR
BRIR,  FIAESR AR LR AL B RE I I, SEBLBHIRALRIFI[15]. H REE A s R AW b Rt
HA R IBACREAN R AR FLBR S, &M T 2 LRI R 2

BT, AT DA H RERON BV SRR, SR T A A RS A A A ) RS RRRE 45 45 1) 7 5 4% La-Fe XL
BIREARIATEL, RGHTFEH G R AE SO0 F2 5 £ X IR (HEDP) W i1 RE, IR H AR La-Fe
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2. SCIOERSY
2.1 RIS EE

ANIKEREERH . SUKAIREL. MR BUK. BRI IR IR . PURIMER. SN, K
IR FAEN. TREREN. REERSEIIN T E 2R R G R AR, AR R At

IR T R (SEM, Gemini SEM 300, %6w], f )X R TR S AR ZE A HEAT T W% K
FIFC &4 UEI Cu Ko 585111 D8-Advance B! X SFFLEATHAX(Bruker, ZE[E)XIFE AT X SHEATH 74T
FE it e 3R A SRS K-Alpha B X 260 HL 1 RE 5 {X (Thermo Fisher Scientific, 3% [E )47,
BORIEIEN Cu Ka 525t
22. BMERERENITE
221 BHENTEAR

IR B i TR R BP0 A s AN o R B 7510 T R PRV S (B, e T R B RS B bR TS 4e
(VR B e 770 ST PR RIS, T DLW A4 e Fr O B 1

W B (g, )RS AR

21)

b, g, NPT R (malg), VO ORIEBAERAL), o IR AT AEIREE (ma/L), ¢, AR BSFATI
VATV R R AR MR (gL, m Ay P R B 7 R ()

222. EBREHHHELAR

LR TR B AR AL B R P R BRI R, AT IR AR A BEACR I AR . R
FB R, IR ARL TS B i 25 BR ORI 2

LERR(R)KITHE AT

R:CO_Ce

x100% 2.2)

CO
Horp, o AAFEEHTER D AR RIAIREE, ¢, ACFL ISR b F AR B R AR IR L .
2.3. IRBHARIEIHIE

FREL La(NO3)3-6H,0 (6.4953 g, 0.015 mol) ! Fe(NOs)3-9H,0 (2.0200 g, 0.005 mol), A 100 mL 4l
KA, TE 400 rpm 25 fF FREDIEFE 20, 32— E AR SR BRI AE . R EUTIER 1.9212 g (0.01 mol)
FART 20mL Kb, SRS, 8 HE R R R IR E K, KV pH AT E 10.0
+0.1.

W FORBRIE TG BRIV VS N 28 42 S8 AR VAR, RO AR P R RO T AR A B e B . SN e
UG, AR S AR R pH T2 8.0, FRLE 400 rpm & 4F RHiEE 1h, DUMEBERTIRIKRII 740484
B85 R RN 0.8 g TARHE I H BEA MR (200 H, D50 = 75 um), 4kSRREI46RE 1 he KR EGIA R
BERMNER, T 75CEMETKBRP12h, ARAHEZREIH.

RN P4 B MED B S, WRIRHABAIK (L x 50 mL)FITE/K 28 (2 x 50 mL)¥E#s, 7 60°C %4~
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T4 12 ho TG RIRE TS o & T S bk, L 5Clmin BITHEE AR THE 2 600°C, #Bke 2 h, w5
13 B B 2 AR -

2.4. FRAEHIZR AR

AR AE I S R C ) . HERRARENZS 110°C T4 2 h I T 2% thid 4 2 S E 0 B IR — &5 (KH.POy)
0.2197 £0.001 g, AT /b EHEAi/K, 552 1000 mL FEMAN, IIAZ 800 mL #E4i/KF1 5 mL ¥k A
g, FHAUKE R BRI RS . FrhndE Il &5 - i 5 23R 2N 50.0 pg/mL.

T AR 1 A P VAR PO P - AZ X 10.0 mL BFRUEIE 98T 100 mL R 2R, B AiK e 7 2 %1 I
TRA, 1SR BEARAE R A, B EIRE N 2.0 pg/mL.

bkt 2R 2. > DI BUBEbR AR VAT 1. 2. 3. 4. 6. 8 F110mL T 50 mL bbafdr, Ry
A L mL FUR M FRVE R 2 mL ARIR B VAV, FHBAI/K B R B X1, V4] 5 # B W6 15 min. 7R3 KN 700
nm Z& A IIE RO EE,  DABRR BEAREALER . RO NN AR L il b v i 2% .

2.5. WRBf37I45 hn 8% AR B 14 RE RO S MR

1f HEDP #JUG¥KE A 100 mg/L 2614 R, 2 HIEL 30 mL 3T 30 A, AN A 770 & PO W8 B A4 )
(0.2, 0.3, 0.4. 0.5F10.8 g/L), BT 1HEMRZAF, 7£25°C. 250 rpm K/ FHRGWM 12 ho V45
Ji, KH 0.22 pm FUFLIEREIE LIS, e SRR, HARAE A X (2.1) TR R A

2.6. FiRIRHSCL

TEANFFI4G HEDP (20, 50, 100, 150, 200 #1300 mg/L)s&fF T, 4 AL 30 mL ¥& R T 55 0
o, ISR AEFIE (0.3 g/L) MR EA KL, 7E 25°C . 250 rpm & ARSI 12h. RVEEHUR, 198 L
T HBOR R, AR AR (2.1) TH R 2R R, S P A i 2

2.7. WMBh ISR

£ HEDP HJ4G7& B 24 100 mg/L 644, B 30 mL & T 2508, IIA 0.3 g/l W FHA4 kL, 7E 25°C.
250 rpm 44 N AT OB . T MHFARJE 1. 104 20, 30, 40, 60, 80. 100, 120 Al 150 min 43 i HY
B, T E EIEBOTINE OGRS, MRAE A K (2.1) T AN RN TR S B A, xR B B e 2L

2.8. /& pH X IR RERIR R

7E HEDP #J4R¥RFE N 100 mg/L 2444 F, KH B RAE S NS RHA R pH 235752 3. 5. 7.
9l 11. HX 30 mL T G T 20, N 0.3 g/L WAl #E 25°C. 250 rpm 21F R T 3
ho &5 JEIEE LG, e o6 R R4 A Q1) TH R A & .

2.9. #ERAETF IR RERIRNG

Be il = Fh AR R

(1) 100 mg/L HEDP + 200 mg/L NaCl;

(2) 100 mg/L HEDP + 200 mg/L Na;SOa;

(3) 100 mg/L HEDP + 50 mg/L & EEZ(HA)

3 EC 30 mL IR T B0, N 0.3 g/l WA KL, 7E 25°C. 250 rpm 254 N ARG R 3 h.
RN EER G, 3 EIERGEIE ROCRE, AR ARQL)HER SRR, CIITASRARE A7 B 51 4%
G priE

{5
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3. HR5ITIR
3.1 MHRAE

Figure 1. SEM images of the La-Fe bimetallic material
B 1. La-Fe NEBMELH) SEM Elf%

W R AR SEM B ILIE 1o 5 ARV RRAR J5 ,  BEk0E R S R T B i 2 fLah ), %
TESRGNS , M TR 48 R AL & @ A S8 A A T L 3R AR SR T AT A T ) B 5% . EDS 2 Hrsh 31
BoR, MEH La 5 Fe mEBS 0, Hb La S @& T Fe, SEMUIRHIRENR LaFe BE/RE(3:1)—
;, R Fe CRINBIIEE KB T ARG . 1A, EDS H RGNS C LRES, WIHAED
JRAAR A R BAUR DA 78 70 Bk, BT BHEOR BE 2 FLAS I (1 5] I BB B m I 4l B 5 2 i A 1k

P OE R AR XRD EIRE WL 2(e) o FE M IATET A B 7] 5 FeLaOs MR RAFITHE, R
FRTEN 5 LaOs fAE—EEA, (HRARNTHFHEERIL FeLaOs dill, RIAMEILUSEE A FeLaO;
SERN T ZRERT NS R EANEA A NS B AL TR AR, AR TR SRR e S
HLT S50, SRS AT i (T BRI Ll [ O B s R i, AT (2 2E X HEDP 265 ML L &4 1)
e B

NIE— G R RLR T S FIREE, 4 La-Fe X4 @A R K H— La. Fe MEHEEAT T O 1s XPS 434
(LI 2(a))o =FRAELE) O 1s 1 B35 W] 43 fif o 1 46 (2) 531.5 eV) Fl g A% 4A0(£ 529.7 eV) il 3o
W, La-Fe X4 J@ i Rk 2 T W PR 4200 o LU B35 T B A k), REAH R & 42 T2 RIS =
TV . X SRR B O PR R R R AR T R AN A ) GBS T

HE—25 XPS La 3d 5 Fe 2p /g ROLIE 2(0) R 2(c)) o, W&@MEH La g & Reseik -
%, 1M Fe M2 G REAHNIFEAR, R Fe SIS THTH La [n Fe B . 1% 55010 R8N A R
7ML, R T RIS, TR La-Fe XU J@ ARG A HILIBE IR S5 1) e R0 i 42
BT FLT G 2 T S
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Figure 2. XPS O 1s (a), La 3d (b), and Fe 2p (c) spectra, together with the XPS survey spectrum (d) and XRD pattern
(e) of the La-Fe bimetallic material
Bl 2. La-Fe WERBHHRIAY XPS O 1s (a), La3d (b). Fe 2p (c)iE & XPS 2if (d)F1 XRD B (e)

itk — 47~ HEDP fE La-Fe XU4 & S22 R BRATLER,  S0FWR PR AT S ADREEAT 1 8 B A4 21
S IERE(FTIR) AT . WL 3 B, WM R AORHE 3200~3600 cmt Ab S50 Hi 9 f9-OH 4R zh Tl
BRUE T R IERL K> T WM HEDP J&, ZWRICH SR k5, RRERES S TR
. HULFERy, ££ 900~1200 cm® XAk pN, W B S A0 REH B OF 25 Y0 1 2 DMRRAER IS . b, 24
1100~1150 cm* 4b R e Rl U &+ P=0 fii4E k30, 1050~1000 cm ™ &b it v P-O-M (M = La 5K Fe)
BeAHR3l, KA HEDP 43w B RR 5 [ 55 6 Jm v M A7 s Z A1 B T Fe o 1A N BN 4% 45040
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Figure 3. FTIR spectra of La-Fe bimetallic oxides before and after
HEDP adsorption
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Figure 4. Adsorption performance of HEDP as a function of adsorbent dosage (a) and different material compositions (b)
4. FEHZINE (2) A E4E 53+ 8H(b)XF HEDP HYIR B 145

NHfE La-Fe X4 @M kLT HEDP [ 4%, 75 HEDP #I4G¥K N 100 mg/L 2644, 43 3% %2
7 0.2, 0.3, 0.4, 0.5 #1 0.8 g/L #m&E T HWIAT AL 4(a)). 45REW], H&nEH 0.2g/L B, #k
{14 BT I 2 R P 2k B B i E (>400 mglg), AR B F ARG UK. B BN AI3Gn, IR R IR
W R, ARSI 029/l JE N ENIHE; SItER, HEDP fIZMREREIET, FHESm
HiAF] 0.3g/L K LL ERRRELE 99%LA b LREFH BN A S LR, 0.3 g/L B IR RHE M & 1)
A B SEIL LT 584 23 b, DRI 32 8 Dy Ji5 48 S 30 ) e A 4R I 2o

FEMEEA E, XT Fe. La f La-Fe X4 @AW BHPEREIEAT 0T LL (LI 4(b)) o B— Fe #EIXT HEDP
FIMR I RE SR, LW AN 2 50 molg, EERFEAL 20%. AHELZ T, La AORIRII D 25 0 i i R
PERE, WA EZ0h 300 mglg, 2534 100%, £ B La**5 HEDP 2 [al {7 fER5R I 46 A sk AE - 3t
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IG5 Fe M2 [ FelaOs X 4g: & AL ORFFILF- 5 A K BRI, FLOR 73 527 24 350 mg/g-
ERTERIIRZ, ZMEHER T La IR Z 25% M E 00 T U5 SEBL T PERESETT, PRI HY B S (K X2 )& b )
M. Fe IISINMIZE T La ()= E A HIHE I 7 RIEEERL A, M La* B AR E FeiE S
(AR AR ELAE O [R5, TR 1 B e SR IR PR A 2R

3.3. FRWRM S NFEFHESH
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Figure 5. Isotherm adsorption curves (a) and kinetic adsorption curves (b) of HEDP on the adsorbent

[%] 5. HEDP ZEMR B+ 4} L BYSIE WX B 2% (a) S5 30 1 IR B B 2% (b)

Bk X 4 e W B A X HEDP (14485 3 W B A4 14 L FE] 5(a),  FF43 SR A Langmuir 55 Freundlich 57 3t
T . B PHETIREE (Ce) T, WP R (Qe) Bl ke T A2 e, R WM B ik Rz 0 ik 1R . AHLE
Langmuir #2%4(R? = 0.7999), Freundlich #5575 4 AN 5 X 1] A SR I H SEAR 40L& 80 (R? = 0.9513), JC
HAE R X B A LA A i, SR b I R B A A AR — 3R T R0 2 B R BHRE . 25 SRR,
PRI THIA7AE 2 Pl e 5 20 A0 (IR PR A, W BRI 7 T BBV T 22 2B B 43 TR AH ELAE

B4 R A AR HEDP IR B 3 77 2R E UL 5(0) . Wi BRI 2 B 28 DRt B - 2218
REFRAT Y, AU B S bR, B i 1B A 21T . 3 1 A S R BN, #2312 (R? = 0.9852)
B — R AR(R? = 0.9771) B H m ARG, Refl SEAER AR B AR B AR, R A& 2 DL PR AL
HilvT . 45ia XPS i La 5 Fe HLFEE AR SE B, IR B2 Fp o] GB35 M R 148 & ST
e

3.4. BAANE pH BILFERAE TR R R

ANTA] pH 25 4(3~11) N H Bk 4 & E A%t HEDP (WA T N LI 6(a). 25K, MORIERME S 1
NRIL R ERE, pH = 3 IS WA B IE 280 mglg; BEFE pH ThiE, WA EIRET N EE, JEAE pH
9~11 X[ T-F2 € (£ 130 mg/g). % 3 VAR TR R I e Ve . HEDP HLBDIRES & OH 5 4+
WL RLN.: A% pH 2AF T, PARIRTHE MG SR, AR T 5 E A2 411 HEDP Jdid & i AE 5 3R 1 4
JBALE R AR MERMEREH, OH 5 HEDP Sa4-E M7 E 1159 La/Fe ML A RS, Mg
Bfo SERERH, ZAMRTEMBRIESRM N EA BN HEDP LBRPERE.

1E Cl'y SOF K JEFHER (HAVIELE 261 N B0 4 JE A kL5t HEDP FIMRBHPERE LK 6(b). 52 AR R
ML, TESIAFYGFLE T, PRI 2 B RFEIEL) 300 mglg, ZiPRFIGL ST 98%, BB E /.
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Figure 6. Effects of initial pH (a) and coexisting anions (b) on HEDP removal performance
6. #1A pH (2) 5 BEF (b))%t HEDP KRR AISZ T

4, &5ig

AW TR T — R A ARG 1 B 0 i S A B AR, LA R R A e i 9% 5 4 5 4

PR S 2 FLR TP IR T, B4R T T APRIA LU AR 5 3R I AL n 3 B, AT 92 7 % HEDP
I ERIR T S A A A RE ST o I ARLRBIL I e R B R AL P 5e MR BR AR, FFEAR pH %1
FIAF I S AL T AR RIF R E IR R, RBL RAFROIEFEME S HLTLRE 1. Behh, 5 AN ks
J& Fe B HUC La, 78 FBEARHS - FEAMRDRESAS 1 Rl SCELR PR RESR T, TR H S 25 i P [ R 5 R

LI TR 7
AW FAFEN LA B AR RS IG H A H (W H w5 2025AFD268) 11 5t Bl .
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