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摘  要 

为满足柔性超级电容器对高性能电极材料的迫切需求，本研究采用电沉积法在亲水碳布(HCC)上原位生

长镍钴层状双氢氧化物(NiCo-LDH)，系统探究了沉积时间(1000 s、1500 s、2000 s)对复合材料形貌、

晶体结构及电化学性能的影响。通过扫描电镜(SEM)、X射线衍射(XRD)和X射线光电子能谱(XPS)等表征

手段证实，1500 s沉积条件下所得材料具有均匀的纳米片层结构、较高的结晶度以及良好的Ni2+/Ni3+与

Co2+/Co3+氧化还原活性。电化学测试表明，该材料在1 A/g电流密度下比电容高达1588 F/g，经过3000
次循环后，电容保持率达74.7%，展现出优异的循环稳定性与快速的电荷传输动力学。本研究验证了电

沉积法在温和条件下构筑结构可控、性能突出的柔性电极材料的可行性，为高性能超级电容器的设计与

开发提供了重要参考。 
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Abstract 
To address the urgent demand for high-performance electrode materials in flexible supercapaci-
tors, this study employed an electrodeposition method to in situ grow nickel-cobalt layered double 
hydroxide (NiCo-LDH) on hydrophilic carbon cloth (HCC). The effects of deposition time (1000 s, 
1500 s, 2000 s) on the morphology, crystal structure, and electrochemical performance of the com-
posite material were systematically investigated. Characterization via scanning electron micros-
copy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) confirmed that the 
material synthesized under 1500 s deposition conditions exhibits a uniform nanolayer structure, 
high crystallinity, and excellent Ni2+/Ni3+ and Co2+/Co3+ redox activity. Electrochemical testing revealed 
a specific capacitance of 1588 F/g at a current density of 1 A/g. After 3000 cycles, the capacitance 
retention reached 74.7%, demonstrating excellent cycling stability and fast charge transfer kinetics. 
This study validates the feasibility of using electrodeposition to construct structurally controllable, 
high-performance flexible electrode materials under mild conditions, providing important refer-
ence for the design and development of high-performance supercapacitors. 

 
Keywords 
Electrodeposition, Composite Materials, Supercapacitors, Electrochemical Performance, Flexible 
Electrode Materials 

 
 

Copyright © 2026 by author(s) and Hans Publishers Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/ 

  
 

1. 引言 

随着能源存储需求的日益增长，超级电容器因其高功率密度、快速充放电能力和长循环寿命而备受

关注[1]-[3]。电极材料作为决定其性能的核心组件，其设计与合成策略尤为关键[4]。镍钴层状双氢氧化物

(NiCo-LDH)因其丰富的氧化还原活性、较高的理论比电容和可调控的层状结构，被视为极具潜力的赝电

容电极材料。然而，其实际性能受到制备方法的显著影响[5]。 
传统水热法虽可合成高性能 NiCo-LDH，但通常依赖于高温高压环境，反应时间长，且工艺参数对产

物形貌与均匀性影响显著，尤其在柔性基底(如碳布)上易引起结构损伤或性能不均[5]-[11]。因此，发展一

种温和、可控的合成方法以实现 NiCo-LDH 在柔性导电基底上的均匀负载与结构优化，成为提升其电化

学性能的重要途径[1] [12]-[14]。 
电沉积法作为一种新兴的合成技术，可在常温常压下通过电场引导金属离子定向还原与沉积，具有

反应条件温和、成膜均匀、形貌可控性强等独特优势[5]。该方法不仅能避免高温对柔性基底的结构破坏，

还可通过调节沉积电位、时间及电解液组成等手段[15]-[17]，精准调控 NiCo-LDH 的晶体结构、纳米形貌

及界面特性，从而优化其导电性、离子扩散动力学与电化学活性[18] [19]。 
鉴于此，本研究采用电沉积法在亲水碳布(HCC)上原位生长镍钴氢氧化物(NiCo-LDH)，系统考察沉

积时间对材料微观结构、形貌演变及电化学性能的影响规律[19]。通过扫描电镜(SEM)、X 射线衍射(XRD)
和 X 射线光电子能谱(XPS)等手段对复合材料进行物性表征，并借助循环伏安(CV)、恒流充放电(GCD)和
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交流阻抗(EIS)等电化学测试，深入探究其在超级电容器中的储能机制与性能表现，旨在为高性能、柔性

化电极材料的可控合成与设计提供理论依据与实验参考[20]。 

2. 实验 

电沉积法制备镍钴氢氧化物与超亲水碳布复合材料 

首先，称取 5 mmol Ni(NO3)2∙6H2O、Co(NO3)2∙6H2O、Ni(CH3COO)2∙4H2O 和 Co(CH3COO)2∙4H2O 溶

解于 100 mL 去离子水，超声拌 30 min 制成电解液。将酸化后的亲水碳布作为工作电极，氯化银(Ag/AgCl)
电极作为参比电极，铂片作为对电极，采用恒压法施加-1V 电压进行沉积，沉积时间为别为 1000 s、1500 
s 和 2000 s。 

待沉积完成后，再使用无水乙醇和去离子水充分的冲洗亲水碳布表面，然后放置于真空干燥箱中，

保持温度为 60℃下持续干燥 12 h 后，即可获得 NiCo-LDH/HCC。 

3. 结果与讨论 

3.1. 样品表征分析 

图 1 为电化学沉积制备的 NCL/HCC 复合材料扫描电镜图，从图 1(a)~(c)可看出，图像中的纤维结构

清晰可见，主要展示了碳布纤维表面的形态。图中呈现纤维细长且交织布置，其形成较大的网络结构。

此结构利于增强复合材料的机械强度，还为氢氧化物沉积提供了更多表面积与反应位点。图 1(d)~(f)能看

到，氢氧化钴与氢氧化镍以颗粒或者纳米结构的形式，在碳布纤维表面沉积着。氢氧化钴的颗粒很细小，

有的是微粒状，还有的是层状分布于纤维表面。这说明氢氧化钴在电沉积时，沉积层比较均匀，比表面

积也比较大。这对提高电化学反应活性和储能性能有帮助。氢氧化镍呈现为细长的颗粒或者纳米片状的

结构，特别是在放大倍率较低的时候，其片层结构更明显。这些片层的排列提供了更多反应位点，电化

学活性也增强了。电沉积法提供了较高的沉积均匀性和精确控制能力，通过控制沉积电流密度和时间，

能够调节氢氧化钴和氢氧化镍的沉积层的结构，进而影响材料的导电性、比表面积、离子扩散速率等性能。 
 

 
Figure 1. SEM images of NCL/HCC-1000s ((a), (d)); SEM images of NCL/HCC-1500s 
((b), (e)); and SEM images of NCL/HCC-2000s ((c), (f)) 
图 1. NCL/HCC-1000s 的((a), (d)) SEM 图像；NCL/HCC-1500s 的((b), (e)) SEM 图像；

和 NCL/HCC-2000s 的((c), (f)) SEM 图像 
 

在不同电沉积时间的条件下，NCL/HCC 电极材料的形貌有显著区别。如图 1(a)，图 1(d)所示，电沉

积时间为 1000 s 时，NCL/HCC 电极材料的纳米结构可能尚未完全有序，表面较为光滑，纤维形态可能表
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明沉积层没有完全结合，这可能为材料的电导性及电荷转移效率产生负面影响。如图 1(e)，图 1(f)所示，

随着电沉积时间的延长，纳米纤维趋于均匀且排列紧密，沉积物显得更加致密，且微观结构的特征愈加

清晰。电极材料孔隙度的降低，进一步优化了电极材料的导电性能，满足了更高电流密度的需求。 
运用 X-射线衍射(XRD)技术来剖析制备的复合材料的晶体结构。实验结果如图 2 所示，衍射峰出现

在大约 2θ = 27˚和 2θ = 38˚，这两个峰通常与 Co(OH)2 和 Ni(OH)2 的特征峰相对应，分别与 Co(OH)2 的

(001)晶面和 Ni(OH)2 的(101)晶面有关。并且，随着电沉积的增多，由 NCL/HCC-1000s (蓝色曲线)变到

NCL/HCC-1500s (红色曲线)，衍射峰慢慢变强。这意味着在电沉积时间较长的时候，氢氧化钴与氢氧化

镍的结晶度或许会提升，进而让其晶体结构变得更有序，呈现出较强的衍射峰强度。从 NCL/HCC-1500s 
(红色曲线)到 NCL/HCC-2000s (黑色曲线)，衍射峰稍微变宽且减弱了。这或许是因为沉积时间长或者热

处理过程长，致使晶体结构不完全或者变形了。 
 

 
Figure 2. NCL/HCC XRD spectrum 
图 2. NCL/HCC XRD 图谱 

 

 
Figure 3. XPS spectra: (a) Ni spectrum; (b) Co spectrum; (c) O spectrum; (d) survey 
spectrum 
图 3. XPS 谱图：(a) Ni 图谱；(b) Co 图谱；(c) O 图谱；(d) 全谱 
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如图 3(d)所示，通过 X-射线光电子能谱(XPS)分析确定复合材料 NCL/HCC 主要由 C、O、Ni 和 Co
组成。详见图 3(a)，在 Ni 2p 的特征谱图中可以观察出这三种材料皆在 856.6 eV (Ni 2p3/2)和 874.4 eV (Ni 
2p1/2)展现的两组轨道峰，以及伴随卫星峰，均与材料中的 Ni2+/Ni3+对应。如图 3(b)所示，在 Co 2p 的特

征谱图中，Co 2p 谱线的分裂模式表明氢氧化钴主要以 Co2+存在。类似于 Ni 2p 谱线，Co 2p 谱线中也出

现了饱和峰，这是由于氢氧化物的氧还原反应所引起的电子跃迁效应。在 O1s 的特征图谱图 3(d)中，在

530 eV 出现的拟合峰与氢氧化 物中的氧离子(O2−)相关，代表氢氧化钴和氢氧化镍中的氧化态氧，在

532eV 和 533 eV 出现的拟合峰对应氢氧根和吸附的氧原子。 

3.2. 复合材料的电化学性能分析 

(1) 循环伏安法 
在三电极体系下，采用循环伏安法对制备的电极材料进行测试。(扫描速率为 5~50 mV/s，电压为 0~0.6 

V)。该曲线呈现出对称的锯齿状形态，表明材料具有典型的电容性行为，并且其电荷存储过程包括双电

层电容和伪电容的协同作用。由于材料的电化学反应迅速，CV 曲线在不同扫描速率下表现出一致的形

状，说明材料在快速充放电过程中保持了良好的电容性能。 
 

 
Figure 4. CV curves at different scan rates: (a) NCL/HCC-1000s; (b) NCL/HCC-1500s; (c) NCL/ 
HCC-2000s; and (d) comparison of CV curves at 50 mV/s 
图 4. 不同扫描速率下的 CV 曲线(a) NCL/HCC-1000s；(b) NCL/HCC-1500s；(c) NCL/HCC-
2000s 和(d) 50 mV/s CV 曲线对比图 

 
图 4(a)，图 4(b)，图 4(c)分别展示了三个样品的 CV 曲线，通过观察发现在 0.2~0.5 V 的电压范围内，

氧化还原峰呈现较为对称的形态，这主要源自于 Ni2+/Ni3+和 Co2+/Co3+之间的氧化还原反应，详见公式(1)
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和(2)；增大扫描速率时，电流密度增大，不过曲线宽度变化不大。这就显示，电解质离子的扩散速度还

是能跟上电极反应的速率。在这一过程里，还原峰倾向于向低电位移动，氧化峰则是向高电位偏移。这

一现象主要是扫描速率不断升高，电化学反应受扩散限制，影响氧化还原峰位置。 

 ( ) 3
2Co OH Co e 2OH+ − −↔ + +  (1) 

 ( ) 3
2Ni OH Ni e 2OH+ − −↔ + +  (2) 

图 4(d)展示了在扫描速率为 50 mV/s 时，三种不同电极材料的 CV 曲线对比。如图所示，NCL/HCC-
1500s 的曲线面积明显比 NCL/HCC-1000s 和 NCL/HCC-2000s 要大。较短的电沉积时间(1000 s)可能导致

材料未能充分形成理想的纳米结构，表面较为光滑，从而影响其电化学性能。而较长的电沉积时间(如 
2000 s)可能导致材料表面的结晶性发生变化，产生更多晶格缺陷或不均匀的沉积层，电沉积时间过短或

过长均可能通过改变材料的微观结构，进而影响其电化学行为。NCL/HCC-1500s 的电沉积时间还算合理，

结果它结构更均匀，电化学表现更出色，在 CV 曲线上的表现面积更大。 
(2) 恒流充放电法 
在三电极体系下，采用恒流充放电法对制备的电极材料进行测试。(电流密度为 1~5 A/g，电压为 0~0.6 

V)。图 4(a)，图 4(b)，图 4(c)为不同电流密度的下 NCL/HCC 的 GCD 曲线，可以看到随着电流密度的增

加，充放电时间显著缩短。例如，1 A/g 时充放电曲线较为平稳，而 5 A/g 时，曲线变得更加陡峭，充放

电时间显著减少。高电流密度下，电池的电压变化更加迅速，这反映了电池在较短时间内完成充放电过

程，但也表明高电流密度可能引起电解质离子的扩散限制，影响电池的电化学性能。 
 

 
Figure 5. GCD curves at different current densities: (a) NCL/HCC-1000s; (b) NCL/HCC-1500s; 
(c) NCL/HCC-2000s; and (d) comparison of 1 A/g GCD curves 
图 5. 不同电流密度下的 GCD 曲线(a) NCL/HCC-1000s；(b) NCL/HCC-1500s；(c) NCL/HCC-
2000s 和(d) 1 A/g GCD 曲线对比图 

https://doi.org/10.12677/ms.2026.162031


赵晨 等 
 

 

DOI: 10.12677/ms.2026.162031 134 材料科学 
 

GCD 曲线的对称性体现了该材料在充放电时的电化学可逆性，电极材料可以高效地存储和释放电

荷。如图 5(d)所示，在 1 A/g 电流密度下三种材料的 GCD 曲线对比。从图中可以明显看到，NCL/HCC-
2000s 复合材料具有最长的放电时间，且其对应的比电容值也最大。在 1 A/g 电流密度时，NCL/HCC-2000s
复合材料的比电容达 1588 F/g。电流密度逐渐增至 5 A/g 时，NCL/HCC-2000s 复合材料的比电容平均保

持率会达到 86.6%，明显优于另外两个电极材料。表 1 详细列出了在不同电流密度下 NCL/HCC 复合材料

的比电容数据。实验通过用电化学沉积法制备的 NCL/HCC 复合材料，在比电容和倍率性能上，都得到

明显的提升。NCL/HCC-1000s 电极复合材料的表现比较意外，低于未进行复合时的 NiCo-LDH 电极材料

的比电容，或许可能是因为该材料的晶格结构或者表面活性位点减少造成的。 
 
Table 1. The specific capacitance of NCL/HCC 
表 1. NCL/HCC 的比电容 

材料比电容(F/g) 1 A/g 2 A/g 3 A/g 4 A/g 5 A/g 

NCL/HCC-1000s 823 783 754 734 732 

NCL/HCC-1500s 1588 1511 1458 1417 1376 

NCL/HCC-2000s 1183 1115 1067 1035 1015 
 

(3) 交流阻抗法和长循环测试 
 

 
Figure 6. (a) AC impedance plot and (b) long-cycle test curves 
图 6. (a) 交流阻抗图和(b) 长循环测试曲线 

 
交流阻抗测试在开路电位下进行，振幅设定为 5 mV，频率范围从 0.01 Hz 到 100 kHz。如图 6(a)所

示，NCL/HCC 的交流阻抗谱在高频区域，阻抗谱呈现出近似半圆形的形状，这一部分主要反映了材料与

电解液之间的电荷转移电阻。NCL/HCC-1500s 样品的半圆直径最小，表明该样品的电荷转移电阻最低，

即其具有较高的电化学活性和较快的电子传输能力。较小的半圆直径表示该材料的电子导电性较好，且

在电荷转移过程中，电解质离子和电子的扩散都较为顺畅。 
图 6(b) HCC 复合材料在电流密度 5 A/g 下，历经 3000 次充放电的循环实验稳定性曲线。如图所示，

NCL/HCC-1500s 的电容在经过 3000 次充放电循环实验后容量保持率最高为 74.7%，而较长的电沉积时

间(2000 s)导致了材料的电容衰减增加，这可能是由于晶体结构不均匀、表面缺陷增多或电解液渗透性下

降等问题，进而影响了材料的电化学稳定性。不同电沉积时间下复合材料长循环后的容量保持率如表 2
所示。 

在近似半圆后的那一段叫做中低频区域，电极材料的电容性就凭借线性部分的斜率来呈现，这跟电
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容性行为关联密切，代表着材料里离子的扩散过程。较低频 率时，离子于电极/电解质界面上的扩散会决

定电池的电容性。电极材料的内阻(Rs)能够从交流阻抗谱中曲线与 X 轴的交点获取出来，这截距意味着

电极材料跟电解液之间的总电阻，涵盖电极材料自身的电阻，还有电荷转移时产生的阻力。其中，

NCL/HCC-1500s (Rs) = 0.221 Ω，明显低于 NCL/HCC-1000s (0.511Ω)和 NCL/HCC-2000s (0.314Ω)，在法

拉第反应过程中，NCL/HCC-1500s 电极材料的电荷转移阻力较小， 该材料在电荷转移过程中具有较高

的效率。在低频区域的线性部分，NCL/HCC-1500s 呈现出最大直线斜率，这与电极材料的离子扩散特性

有很大关系。较大斜率值表示离子于材料里的扩散更顺畅。那电极材料在充放电的时候，能更高效地把

电荷存储和释放，所以电化学可逆性就更好。 
 
Table 2. Capacity retention of all composite materials after 3000 cycles 
表 2. 所有复合材料 3000 次循环后容量保持率 

复合材料 容量保持率(%) 

NCL/HCC-1000s 74.6 

NCL/HCC-1500s 74.7 

NCL/HCC-2000s 69.7 

4. 结论 

通过电沉积法合成镍钴氢氧化物与亲水碳布复合材料 NCL/HCC，通过调整电化学沉积时间，控制了

镍钴氢氧化物纳米材料的晶体形态和尺寸，通过表征和测试，探究电沉积恒压法对金属氢氧化物结构和

电化学性能的影响。结论如下： 
(1) 氢氧化钴和氢氧化镍以颗粒或纳米结构的形式沉积在碳布纤维表面。其中，氢氧化钴以细小的颗

粒状或层状的形式分布在纤维表面，这种形态表明氢氧化钴在电沉积过程中形成了较为均匀的沉积层，

并且提供了较大的比表面积，有助于提升电化学反应活性和储能性能。在 1500 s 电沉积时间下，氢氧化

钴和氢氧化镍的结晶度提高，导致其晶体结构的更加有序，表现为较强的衍射峰强度。在大约 2θ = 27˚和
2θ = 38˚，这两个峰与 Co(OH)2和 Ni(OH)2的特征峰相对应。 

(2) 在三电极体系下进行的电化学性能测试中，NCL/HCC-1500s 复合材料表现出最佳的电化学性能。

在恒流充放电测试中，当电流密度为 1 A/g 时，NCL/HCC-1000s、NCL/HCC-1500s 和 NCL/HCC-2000s 复
合材料的比电容分别为 823 F/g、1588 F/g 和 1183 F/g。其中，NCL/HCC-1500s 的比电容明显高于水热法

合成的 NCL/HCC (982 F/g)。当电流密度增加至 5 A/g 时，NCL/HCC-1500s 复合材料的比电容保持率达到

86.6%，在长时间循环测试中，NCL/HCC-1000s、NCL/HCC-1500s 和 NCL/HCC-2000s 复合材料的比电容

保持率分别为 74.6%、74.7%和 69.7%。这些结果表明，电沉积法制备镍钴氢氧化物/碳布复合材料在电沉

积时间 1500 s 时在超级电容器中有良好的应用潜力。 
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