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Abstract

To address the constraints posed by lithium resource scarcity on large-scale energy storage, potas-
sium-ion batteries have attracted considerable attention due to their abundant resources and low
cost. Although manganese-based cathode materials offer advantages in cost and capacity, they face
challenges such as structural instability induced by Jahn-Teller distortion. In this work, a series of
Ni-doped P2-type Nao.Mn1-xNixOz (x = 0, 0.1, 0.2, 0.3) materials were synthesized via a high-temper-
ature solid-state method to investigate the influence of Ni doping on the structure and potassium
storage performance of the cathode. Appropriate Ni doping (Mn:Ni = 9:1) leads to an expansion of
the (002) interplanar spacing, which facilitates K* diffusion. The material exhibits a highly reversible
reaction dominated by pseudocapacitive behavior and demonstrates optimal electrochemical perfor-
mance, with an initial discharge capacity of 94.2 mAh-g-1 and a capacity retention of 52.3% after 100
cycles, both significantly superior to those of other doping ratios. This study indicates that moderate
nickel doping can effectively optimize material properties, providing a reference for the design of
high-performance cathode materials for potassium-ion batteries.
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Figure 1. XRD patterns of materials with different Mn/Ni ratios
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Figure 2. SEM images of (a) NMO, (b) MN91, (c) MN82 and (d) MN73
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Figure 3. (a) TEM image of MN91, (b) SAED image of MN91, (c) and (d) HRTEM image of MN91
3. (a) MN91 B TEM &, (b) MN91 4 SAED [&, (c)Fi(d) MN91 &9 HRTEM
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Figure 4. (a) CV Curves for the first 3 cycles of MN91, (b) Cycling performance of materials with different Mn/Ni ratios,
(c) The first 3 charge-discharge profiles of MN91 at 100 mA-g %, and (d) at 20 mA-g*
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Figure 5. (a) Rate performance curve of MN91, (b) Charge-discharge curves of MNO91 at different current densities
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