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Abstract

Pretreatment of minerals or pulp can change the physicochemical properties of minerals’ surface,
thereby improving or altering the flotation performance of sulfide minerals. This study analyzes and
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summarizes the principles, methods, and application effects of commonly used pretreatment tech-
nologies in flotation process, including grinding, electrochemistry, radiation, surface oxidation, and
microorganism. The aim is to explore and promote the application of pretreatment technologies in
flotation process, and enhance their efficient utilization in the flotation of sulfide minerals.
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TEERS R, W, 4R HEE S SR U4 B AE S & £ B T h—— 3R
B TV MINEEY S, RABY - s L2 BT B EE, FEAREe L 2R ER
P DRI, PP R SCELBR AN & R B BT [L] [2]. B mdn o SIS AR B — BB B IR AN TR
¥6, ZHW BN RIS AL BRI R SRR A, HEFIEAEDRA ST E
ZORBIGHEATH 3]

SR, ST 2 U A L PSR, Wl ST, AR SR DL SRR R
PR ML B BRAT 4 o bR T e AT DX WACHR) (54 JL 1R ) A R AU IO B R o 93 e e 8 v 75 S A e i 771 LA S
BT H B P e e = SR 4] [5]. ZEERACH W in . BB M SRR AR, AR AR
VAT S5 IR v 2 5 R A SR RS o BR8P 4R 2 £ FL R T TR J /K ) <2 JR 22 BRAL I (MS )« L5 (S0)
ok g JE EBAL S, AT AT 4R (6] IR SR IR IR SO K 1 A S A AL
YA, R A S AE R 2 T FeaOss Fe(OH)s Al Fea(SOa)s 55, MIMTANF] T J5 Sk & 5[ 7] 7
Bk, RETRATRL AR (U BALE™ 75 2o 40 LASEEL H I VIR S, Glambl G ARRL (A T, N2
FIMEAY HKEL, thESRANBIEA M, ARG ShAL[8]. e AN 204 ™ YR, BHiEA
W) SR B IR A, XA I A A F BRI 9]

M LB — BBV R, ZERNAT—EAEDH S MU ELTT i LB AT ik . 5 KA
IREVZ IR I P (0 i B AN SR 2K R AL 2R 1 AT Y LA K S8 A J2 S5 TIAL B 5 2 fi T 2
FIAAR. ARSCERA TITFREY . BASE, TR R A ARG )55 1 B RAL B VA B V7 i Y
WA FRIRIT FUE e o AR L M AT BB S AL BT iR AR R B AR RO AR B CR, R T HAL
BORLERACH 0k A s RN, A AR B 5 VA AEBRAL T Pt i R P A J8 s RIS AN oMb 2 o B2kt
AL BTG 4 Ja

2. BN TALE

PER R SEEL 0 AT A0 5 BRSO, A e (™ A R T A R 245 R e
W, N JE SR E A I M . (R R E h, RFEIRIBET A BT A B I B
WA J5 B LA R .

HARIE A T B LUBRACH P R S AL A T, AR R DL T B SRR AR FB AL [10] fEBEDT
RERE, AR BTGRP ELAR i 2 R A R LA o I AR AR & SRR R SR LA
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A SR SRR S B H0, & IR, ABRAH 3R 1 T R AR, R R R A
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AP RGPS R Wei ZE[15]RF S0 B A J03 (B9 P B AN AN BB A0) S A A A 1) [ WAL SR A 6 1 1
(RS2, 3 I P R B T DASRAS e i 1 [l SR AR PR P e 22, TR B ISR A3 MR IR I 45 o X =R
TV B B SR A A IR ST, AT UM Cu G IR, AN BIF S 32 i IR EA %, BHLIE T 754647 - Nooshabadi
ZE[16]HF ST R I S AR L, ZE AN i B 5 B (1 RIS MG . AERF B R AR bl TV RUNAR A, &
FEAE— RAIR, WS AN AR Rk I S B R B R R T S R . RS EE
BERTI, SEARAT ) [ B BB VAR pH 3G RMIE R, X R BN TE S pH B R R T FIRAH

YRR RSP, BB A TR pH 52 [13].

SR (R BER L)AL, B BT DA B V23, X AT REVHER T B T DASEILA ) S 4 Y
B EIE IR AT [17] . SIREAHLL, T AT AR N AR A BRI (iR, (H & AR
SRR AT B0 ([ CR [18] . Feng SE[1910F U B S IR ARLE, T 7T LASR MR ALl RI¥E 13 J) 2B &
PRARPE LR . 2 1 fRIA 1 R TRAL B BRAL A 2 16 A B2

fife 1 B3R

Table 1. The influence of grinding pretreatment on flotation of sulfide ore
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3.1 E%E

B VPN R AL TR 73, NI JE R 2R r A T iy BB A, P A S O SR 77
£3.55 NaHS. NaClO. H,0,. Na;S. NaS;0, 1 HSCH,COOH %[23]. Wang [24]HF 75 % B H,0, X} s 4 e Al
DTS A B S . SRR S AL AE 400~700 mV Al  EEHRET ) [E U AR R (~90%), 1T
J7 B0 (%) [T WAL 26 B A A P S (R B I T B FRAES, 7 B R 3 2 R DR H2O W DS 3 T AF e S
K NaClO 5% NapS 42 Fa o o] LASEHUBR A A A B A sk B 20 25 [25] . 7EVFIE AT NaClO 5% NaS
V2% e A A% B FE E E R EF 10 mine 43I K HALIE+0.2~0.55 V Z [A1fF, AT DL B A i M S 4
Wbk, HA KA N+0.5V B, FEH R B afsm e 1 [ USCE A G A 53 i 93.4%H1 92.8%. 1X 32 EIHH
THEAETAEL, BT ERREALCKT 0.2 V)RR AL .

3.2. 4hInEFE

SN ER 37 R R S AR 2 R R R E A0 R 2 A R R AE AR E D, BRI AR T A L2
SERE, AEAT YRR B R A AR 4K . Gebhardt S5 [26]AF 7T 40 I 37 5 REAR B R0 38 BT IR 3% 43 B IR . 45
BRI UG S B, v DLSEIUEARA AR R B A B . EARAR SR 27T TR, AR AL
1£-3000~2400 mV i, BAMACEEAY AT LASE s e il v, i HL T DAY R ILFIE R pH Yu s Tk
WA A RIE R, HAE s . VAR RN PR T A B 5 R BRI RS K R, e SRAE HAk
YER R ARG T 25K P 40 Cu 0 Cu(OH)2 A CuO %5, MM S8t R TH 357K « SR A AR i 4 4 ™
BEATTALER, A RIS T 5.33%, BEREIERE S T 4.71%, fECERRE T 5.77%[28]. %2 845 T
LA 2 TA BT B AR V7 22 R 52 1

Table 2. The influence of electrochemical pretreatment on flotation of sulfide ore
Fz 2. BALEFMAESNRAY ZIEANFIm

Jii AL P S A VISERVE S Ak 2 B SCHR
TR > 84%, THEKDT ST H2O2 T DU 3R Bk 2 A 1K

H202: 3~5 mmol/L [24]

A o KB R U FeO. FeOOH %%,
RGN L, HEAL+500,

TR ISR 82%; HLAL
—400 mV, BB RISy
11%.

NaClO = Na2S.
fir: +500 F1-400
fh2zyE: MV, pH=10

XPS 7 H713% B 24 FE A +500 i, EFR
AP T o R mRAA [29]
—400 mV B}, JCEEER SR

KT B AL 47 52% R = &
NaHS. HEH S 48.67%; HHRED &40 F NaHS 5 8 bie R Az, A AEHD

fir: —510~-530 MV LA6YMEILE 1.00%: FHMUEINL 7] 8371 ik %] B bF ik Hett. (0]
R 83.77%HE 1 £ 87.35%.

g e VLT SECURE R MBI 1 SRR RE AL
st A S Ve, PR pH T BT FAEIIIRL, WM ETIE
g AT o FRUREL WURER, SCER ARG KR, R

S2 A 4. HAL A T2 T 35K PR

4. EETTALER

ARG PAC PR A AT A BB BRALD AT AL B, SO BRAL AW R T AR I A A R AT B b )
Wrdss, MG 7% . AT T2 221 20 7 RN X TR AL AT 7 32 X S
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4.1. BEE

P AR AT T 20 KHZ [R5 8, T 25 A S80S s i it 0 205007 A 8 75 Y AE 7K R 7 A P B AN o AR
R 7H I A (20~50 kHz) 2 B2 AR AN, S — PP SRR AR IR . KRR R B S 1 I
HAEA SRR il R SR A [31] o B U A R A AR T LA R AN R I 4 RN FLAG IR IR 2
g,

TEGRAH PR TEAFAEN Ve SE i IS, R P P B B EAT T4 3 v DAk 381X — B4 . Aldrich
(328 78 3 WA 75 I AL B AN ] DA 35 3 B AL IR T V0 L VR R A R, 1T LB S PR
FURI . X LB vl B8 JH B T TRAL R e 32 m AL A P K B /K P AL A ™ P ROk i, AT S BRI 8 1%
I3 . Videla S5 [33]HF 78 R BUXT B A0 HR R AT (1 18 2R 2 DA R v a9 3ok R PG 75 B A7 A 8 M DA e 0 174 [ i
Ko AP A R B NS T 4/ SOB AR Pk R, YA TR IR, AR T
WORIAEIB VR 2 T R B o Misra 25 [34] FHEE A5 BN #5400 HEAT Tl b 2 % 30 24 AL BRI (6] 4y 40s, pH 2y 5~6 I,
BRI IS 2 N 25%8 11 £1] 85%. Newell 55 [35]0F 7t 3% BH it i 768 75 TR B = PGB AT (B 8RA . 2
BN ARG B S R I e i

4.2. WUBGE

T A KAE 1 KRR 300 MHZ) 3 1 22K (3R 300 GHz) 2 [ LR . SAEGn#Tr R,
PR T DASEOUE PRI, X BRI FERA TR S A A AR AR . IR PRI BT
OHR A, anmT A f TR T 2R L BEAER B 1 e R AT 18 A U 8 2 55

Sahyoun %5 [36]HF 78 i b AT VI A o IRIGAE BRI ThEA 12kW, AL A 0.5, 7%
TR IE] 1 min B, 40 [ENCRSR S T 15.9% . X 3 B R T o mT DU EAH L SRR, AATATSE N T AR 8
R 43w i B FHA DA . Can S5 [371F U iist Ak BT DURPBRALA™ vl V- (RS0, B 5 TRk int Th 3 AN
ALFRENT (] 0, BT SRR T R VR R, R R X S AR T O AT A i R R
VA, TN IR T B ARk . Silva 25 [38]HF 7T 2 AR AS SRR S AR RS ARG
BRAT TR . A5, G R R ER AR, BT IR B AT I TSGR BRI, TR B
IR T AR A, R R B R T 4 B AR AL

WA, F 52 W AR T A B B ARV 3 ) R A A Ok B I B I BRI T K T R T T
SLIE {45 5 . Marion S5 [3918F 58 R B0 AT A BRAL SR RV7 % . 2402608 0.8 W, ALFR )y
120s fif, FREICRIER T 33.6%, H¥ThFE N KW, ALHLE Y 30s i, £REICRIER T 34.4%, 4 ]
WA ARFEANAR o X et i — 7 THVA R T 40 100 F) o (R B 2488 7 W0 s, 59— 7 T e T 3R T
(4. 3 3 TR T HR i TRAL FERT BRALA R RS

Table 3. The impact of radiation pretreatment on sulfide ore

= 3. BT HRALE AR

it AL &1 AL TR Ab T T Sk
TR AR 12 min B, AR AR A SRR B T AN KA
%, 100 W AR ZE N 27.89% 8 = (I VIR R TR, B> TSR TR [33]
#iZ: 20 kHz | 31.40%. Ve, BRI THUHAE T 5 R R .
R JK-200 = A50RR  E 5

R FE T EARE NS SRR AT ) S KA )
WESUA 2 (B (A, SR BOCR, A [40]
TR HEA WGHIAERD M i L A B RE 7T -

%, 160 W FR[ANSC N 47.79% 4% 55
A, 40 kHz % 64.38%.
51A]: 1 min
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S R SEALITI M L min B, O AT AR 2, AT LA
e SO\ SAIR R, 6 T AHLBUREE A e [36]
e 5 69.9%. EEGLRIIGE & &
IfiE: 0.5s
T ~ ; WL

MAS-1PLUS TR (eI T, e U IEE TRURE BRI L
W ¥, %, PN = oz o

e DELAFSDE S00W - SESIMRED ek, e e

LIS, AR

BP-210 ALl BRI . B TR AR B T T ) 2

ekt R AR RO 2, URRGH S UKL i 2 LA [42)
e S 26 Wb, 15 w6 {EFLEH I,

M 27%.

5. RESILHALE

R A TRAC B A R LT VA MR TR A A L AL o I B MR, OB AT A (AT
PEZESR, AMTSEIUR SR L 8. AT 3 2 GRS B 1 A A AT TR AL 8 2

51. REFET&ZE

(IR S5 8 TR I AR RN 77, AR A R AT BT LB A — R ) B e A LS )
A, R PEE T AR, ERAA KRN, et A sk, BTN TEE43]. fHH Ar-O2 il
YA O SR BT AR AR AT PR BRAE (R SRR I, SRR (10 2 T A e SR AR 11 19.1
r, ETERDTIN 8.4 i FEMRTHARNS, BB AT MG 1 4.4 (5[44]. XLEU WA S TR A T
REMEAR AL R A Pk FE A AL, I I S ALY - B i R SEBLAL R S 2 M 2 B . R
Ar-0; {58 25 5 A0t PR AR S GRS AR LUK SR MIREAR ) 2EAT AL BE[45] . #E3& 2 AL
M T RATE S TRTUEEE 2 5, {3 A SR SEBL SR B AN B IE I s A S . BT Y [
Wy 100%, 1 BEERET A0y 8% LA, T EAA T FAL B )5 i s e 3R i b s Bk S A 2 1
Fe:Os. Ran F¢[46] A BRI E 55 B 1 IR FUAL B W] 3 vy Bk M B RD NP ik 7 2 . S8 AU )R, B[
RMETRIR LR W BT, (it 70 PR I VA, JFHE— P 1 FSORINE B Lk (Fe) I B, T3
BRI 2R I ) AN AL R B AR TR

5.2. |H{FE

AL FIAL PR 8 o S A B AL R S rh A L R AL, AT SESLE AT e . H
Hil ' AL NaClO MnO2. Os. Oz HaOp AISEAISF R 4% . Hirajima S [47]F 7C ALK H20,
F MR RS AR e Bt 8. B2 Jm, SR UUAR ISR K AL ) (CuO Fea(SO4)s A1
Cu(OH)), Fr ASEHA 2 i BA 2R K PRI, TR AR SR P 8L P 0 vl DAV A, AT XV T B /K 3R
[f7. Suyantara <5 [48]H 7t WISALS S W xRS S B AU AR IR Al P A AR (s . R AR 2 )5
PRI o R BRI, B T3 ET R AR K E o TR A R T AR A R BRI,
P CURBERH I T3 SR DR R HL B /K % o P2 B 45 SRR WA AN (1R US 370 700 90.1%A1 8.4%. <5 4 fajid 13RI %A
MCTRAL B LA™ 157 228 RO S o
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Table 4. The influence of surface oxidation pretreatment on flotation of sulfide ore
4. RESUFTIENTRUT FiER M0

Tk TRAEEL R AF AL FRRICR Ak B B LR

AR B e R RS, BHIE
Flotinor FS-2 F PAX Wi *E4HT —

e R s 1oL . PR
Ar/O; HE & E: 50% RN Flotinor FS-2 % ST AL % MoOs, Flotinor FS-

Iy 3000 W FHFHFBI(PAX), M5 : e [45]
e ) 2 TR AT, 55—y R0
ﬁﬁ%%>m@uﬁ.z H IR, e e g
T 1k PAX 5 W Fft&E 77 o
. ) BRI OB IR ST,
suppi: 210mumin ORI LX10 M e, b T .
;1 min ﬁA%%;/ ¢ ST R B 5 () RO i, TRk 2
AR T () SRR P T ST A T R
H202: 2 x 10 mol/L A 1O ALV 7 BT R T A AL I AR R AL
mm&lzxmﬁmm_§§?3&2;$£%:ﬁ . GREE ARG, ATAHT
KMnOs: 3 x 1075 mol/L %,;EL Lo A ’ JE AR A B T R R, %I
;2 min : e ° TR A I 8 5 5 A TR
ﬁ%ﬂ%gggf??mm BN 9019, SN SET I i RIS e
R H‘* © %K 8.4%. WA 2 T AL R
TE]: 5 min
THEER: 17 mg/ll, pH HEET KA E, AREESRS
H202: 1~5 mol/L =9, FHY [ECR KT FRISE K 1t )53 i FeO, FeOOH #1 [50]
I 7E]: 3 min 84%, TEEH[BIE/NT Fea(SOa)3, AT R M FEA LA

24%., Ko

6. W mALE

TR P T B2 R F AR M SRR AR (I B R Al RN SRA I S AR R ) i SR T &
A FFSGRIANSDGIF], I8 S TR 3R T B (LA ) 2 T 1) SR iR s 7R SR A ) P 2 TR 2 )
ML RIS PESE, IR 20 T iF L [51] . # TR R e . Ak
BT B AR AR e 1 . PERRERIR B . R RLSFFAT B . AR ELGERAT IR . BRI R 2 AL 22
IR %5E[52]. Rao ZF[53]4F L A AR BRAT B0 N B R 5 85 nl v M o sem . 032 J5, J74T 1)
ATV B, T AR AT SR A AR, IX AR AR T R T ) BT R R A A AN I R R R
By, T INEER 2R T T R BR R 2 Al VA TE R . Vasanthakumar Z5[54TF 58 & I i3 N AR TR vk 1 2
TR B AT DA 5 B A0 DA IR B M VR 7 B8 o X SR VA DR T4 B BN B IS P 5 5 2 1K B
5y DA R oy b o8 22 I A A B R IR 2, AT SEBR IR 5 7 I BV VR 7 55 . R FH A R 2R F AT
T TR B AT DLk B I 25 5 B (R B T [55] . L E A IRALFE Y I, 7 R N 88% B 4k [
WCRANN 8%. X AR NANEE 2 J5 7 45 3 1] B /K I Skl SR T B /K . 2 5 MR B8 T i ik
HSGH AL VR I (1 52

B T R R O FRAL R v, IS A I AL PR 60T AT IR AL B [61]4% . ek, T AN B Ak 7
AR RSV A S R R B A X ST B vk, BT, B, A, Y.
BATRNE S R AR UL i TR AR B R SR AC R, T S5 B AR D AT A B X ) B Ak
B,
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Table 5. The impact of microbial pretreatment on flotation of sulfide ore
2 5. AT IEX TR TFER R0

(BGERYES AL P 2% AT 2 R Ab R 7R SCHR
X . EARE A KGR O R AR T 4T
Bacills 1B 1x gﬁ”ﬁgﬁ;gﬁgﬁ WSMEAIOER, TS N RE
subtilis 10° cells/ml 5 8‘;/ ) T AN ZHERIE R, BT AR B S5 7 A
o R, TR M0 EK.
TR B IR N 95% X s
Leptosririllum ~ ZHf#E: 2.5x  FFEH] 25%, M3 EkE" gi%gg%ﬂméig%ﬁifggai [56]
ferrooxidans 108 mL! {9 [E1 ST 5 AN 2009 T 4 21 AN D
67%. MR, AT E AT B 3]
i’_,l pH y‘j 3.8, EF@%E\: 2y 1, e - N2
s FIRALE AN REE SRk &y, 2L
Ferroplasma  ZHARIRAEE: 50x JABRENKEZ N 25x10° i
acidiphilum 108 cells/ml M I, BT fi?;iﬁ%&ﬂ*%%@ﬁ%ﬁﬁ%%@ﬁﬁ?ﬁ 71
M 99%[%E3 16%. M
i M R 2 1A
Bacillus 7 20ppmig  FSEEIMCE Ny 822%, LALLMV T oo
polymyxa  Hf[d: 15 min BRI RN 12.6%. BT A B K
pH: 6
25 TN L R R AT \ -
Paenibacillus FHHL L igﬁmfﬁ%ﬁggj PRSI AEN) pH AR T, S S A
polymyxa 2 x 10° cells/ml W2 87 4% ’E%ELEW A BAE B AEK, mNE R [59]
ymy IF): 5~15 min A% R AR T B

X 4.6%.

7. it ERE

BEXE R EOR H 23 ™ 4, PLRBRACH BRI . PR AR BLSEEa s, Gk o B R H
o BORRAE, PRI 3A ROE T R LS, DRI RCR . A SO i B AL 2
HALZETAC B . GRS FIAC B . PRI TIAC PR A P TA BRI AU FA B A5 T AL B 77 V5 D A B i B DA Rk
TRACH RN FESRAT . SRERD™. WEEHET . 7 Bh AN SR 45) B 1L A RE M EAT 1 VRN A I IR AT U490

BE AL BE —J7 T AR S RO AR, A I, 51— 7 B BUR AR AN AR AN,
WA EE R, ATUABRET R R PR S A A S . A A B A A A
S RN K AL ASEOUBRAL A I B B o S TOUAL B S 7 I A B AR AT P 2R T 114
PR G K E B 2t i R TR A% o Herb, G P Y e o P 7 A PR 2 A R 2% R T 3R T e A A
JZ, ARt ] R SN AR PR 2 DA S A ERR AL R T AL 5 . U E I AR B A I AR
WA A E R IR THAB ) . S SGRIURIMI ), T SO P R T SR K K P 2T 46
ATRAL B 8 R A I 55 2 T A A SRR A IR B v A e W 2 2 b e A, T SRR S R ik
WIEFEIE B

25 NIk, TRV P R TIAL B Gl AL K 22 MO AR SR B BT TT,  (HAR N5 2 Tl B TR
Bt 7B IEA . BEE T A PN T s B A B A, ANURT AR SR B6 = HURE E S s AL VB RIOR,
I HLJ5 847 AT REAE Tolk EAT 32 i R AT 5

B oW

KB SR BN YN TR 5 HR 4 [ #5500 = 02 4 (BGRIMM-KJISKL-2024-08) . 22 H#E Tk
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