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Abstract
Although lithium-sulfur batteries (LSBs) are recognized as promising high-energy-density storage
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systems, their practical application is severely hindered by the shuttle effect and sluggish redox ki-
netics of lithium polysulfides (LiPSs). Herein, LaMnO; (LMO) perovskite nanofibers were synthesized
via electrospinning and utilized for cathode modification in LSBs. Systematic characterizations con-
firm the formation of continuous one-dimensional nanostructures with a pure perovskite phase. Cru-
cially, the intrinsic Mn-0-Mn super-exchange interaction within the LMO lattice is identified as the
decisive factor for the observed performance enhancement. Experimental results demonstrate that
LMO exhibits strong chemisorption capability and high electrocatalytic activity toward LiPSs, sig-
nificantly accelerating the kinetics of both liquid-liquid conversion and liquid-solid deposition. Con-
sequently, the LMO-based cathode delivers a high specific capacity of 1364 mAh-g-1at 0.1 C and ex-
hibits exceptional cycling stability, with a low capacity decay rate of 0.055% per cycle over 500 cy-
cles at 1.0 C. This work elucidates the mechanism of perovskite oxides in enhancing LSB performance
from the perspective of electron correlation, providing new insights for the rational design of ad-
vanced catalytic host materials.
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1. 518

B X e e R AR REBOR A VI 55K, AR HE AT A5 He ik 2600 Wh-kg ™t HOBE IR E 7% AN 1675
mAh-gt BB LU R, BRI R R 710 AR AR R[] [2]. 2RI, b At RE s 32 BR T
PR AT PRl — o B S LB P 0 (LioSILiRSo) FIAE L4 5 1, ™ LRI 20 s e IR AR R
[NLEN 154 [3]-[6]; A AE TR I RE P AR R TV R 2 AL B AE IR SORIRERS , SIR T EN ¢ R
27 [71[8], FECEEV R A AT R . 75 E PRA T 5 S B G bR S P S . D BRI S Bkl BF T
LTI R S SR AR E RE 0 AN R OB AT TR 2 Dh e A AR

FEARZARIEM R, BB R I i A AL (i X ABOg) B HE MURF DL [9] o L AR AR S Ky DAL TI
FIER I [BOG] N HIAOAHESE, BAHBURIE . G5HAE Sl T4 M v IR AORF A [10]. b, B
T (ORGSR R 7 SRR, RIS R A T i S PR RE R A
REEFM[11]-[14]. ZAFHIE T &) d PUE 55 p PUBRIA Rostl, ACRENS B2 TR AAL 71
T, NHmmREARR A CmEAR” , ErEd RIS ES R SRR TS, R R R
ISR X AP AS R A RLE BEAE L REWS (R DL B AR it rR R D 3 L 2 A0 2 A M B AL
VIS T PN PN

BT ERE S, AWPIERRAA A A HAE SR AR LaMnOs (LMO) RS FExs . i
BT R, B ) & O SR I — YRR AT Y . % = AR SR 2T 4 I 25 A B As i BT 57 (K T/ TR
AL REE, He RIS FE NREEEC S B AR T 2R iR 5. EEERLZ, LMO
A Mn-O-Mn B AE T AT HSE 9K G515 278 70 Acd%,  [RD IS b LR AR ra i AL Fn e ) 55
RITHEAEE, ISR 2 Bt A B ) 5 20k € 5 ORI etk . ASCRGIRTT T LMO PR 4t
LA AT s AR AR B 0 5 B HOR BRI Pt AR e A A P RE RO I oA P, B A B R S A
F5 B PEREZ 18] AR ROR 2R, DT L SRIBRHTLAR e U1 e 1k e B AL L T AR AL AR SR T JEL B
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2. SCIGERSy
2.1 RAS5HR

7N 7K A R 56 (La(NO3)s-6H.0) A1 U 7K & it 2 £ (Mn(CH3CO0),-4H,0) 1 [ [ 24 5 Bk 23R 7 6 TR 2
7, BHREEPAN)FI N, N-— F 5 H % (DMF)IE E Sigma-Aldrich. BT L2250 R it — P alifh B8
fHH .

2.2. HE-LSMO kA4 & /K

B F YT 2 5 e s S5 G T IE R S A AR A 4. BARPIRINT . 4 La(NOs)36H.0 (1.0
mmol). Mn(CHsCOO0)24H,0 (1.0 mmol)A % PAN (1.0 g)¥f#T DMF (10 ml). Fr3ERAciiE N 2
mL-ht BN 20 KV &M N TR Y2, FIESRIATIRE. BEJE, BURRTIRARE S S P T
650°C FEke 3h, 93] LaMnOs 44K 4f 4, id A LMO.

23 MEAEREELTIERAH &

T, # LMO 52 BERRGKE (MWCNT) i £t 7:3 ST BEIR S, #1743 LMO/MWCNT & &4
Bl BEfE, Bk, BIEES ER LMO/MWCNT E&MEHZ S 7:2:1 1R &, 7850818 30 min LA E.
IR A BB R UR T T 155 CHALEE 12 h, 536 - 15 EE &M k. KiZE 54K 5 Super P
S5, PVDF #% & 8:1:1 LR T NMP A, SR R 13008 K iZ kR E T EHAZ 13mm 1)
B AT RER b, 48 60°C AT 12 h J5, I IERF, s i &= s 7E 1.5 mg-cm 2,

F T FIENE, K LMO 5 MWCNT 2L 1:2 080T g, S8mE g s e el. %
RN TR F RS ERAT L, 7E 60°C FFJ% 30 min, Frf3 Bl h s YR 15 &= 7 348 1.0

mg-cm2,
2.4. Li,Se BYRT A4k IR B3

¥ S 5 LiS #% 5:1 SR EL 40 BT DME/DOL (AR EL 1:1)IR &9, 7E 60°C FHRp&HE 24h )5,
739 9 0.005 mol-L 2 (1) LioSe ¥ o N iEAT PTRRALIR BRI, 437X 10 mg MWCNT 1 LMO/MWCNT
FESIMN IR H 4 1) LioSe (1 mL)H, & 2 h J5 i 2R ST A L S b 28
2.5. JHREBAYLE R SR

CL A [ A7) AR 2 S R A B AT S B, ZE TR S F B A2 X R e, H
N 0.2 M LisSe 8. KRR ZEE-10V & 1.0V IHEAE A, LL2mV-st 3558 R 47 .
2.6. FREWE A%

KH CR2032 ARGk R . URE SR IENR, #E(E4A 15mm, Jii& 0.067 g) N ftk,
Celgard 2400 MBRE, FFfd FHPRAEERAR FE AR . HMAVRVS NN 40 pb, X MAR 11T 1 39 1.5 mg-cm 2,
T S E I R EFER 5, W O A H.0 IR H1KF 0.01 ppm.

2.7. B

fis RV BE SO TEREIAAE LAND HE MBI R 48 (CT 2001A) Ei#k4r, HEE N 1.7~2.8 V (vs.
Li/Li*)o fEMMR Z2MRAE 1.7~2.8 V HLE G I A L 0.1~0.5 mV-s i34l R 1047 . Hoh s AL 22 IR 7E Bio-
Logic H{k22 TAEH (VMP3) L 58 il o

»
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2.8. Li>S mAZik

¥ Li.S 5 S kR 17 MEE/RELE T VU H B HERNARI S, 75 60°C NHRrE:d+: 48h, #4455 0.25
M Li;Sg HLAER . KA AL TAE R #RFEXT AR AN Celgard 2400 BB ZH 2% Hth . 5 2 1l fHE A 711 P A
hn 20 L kiR 0.25 M LisSe W, FEEGZMS] N 20 puL bRAESERR . FEIB T SETE 0.112 mA HIR T
TERA A 2.06 V, BEJGTE 2.05 V BLAL FEATEEARH, YR LS M 54K, HEERRER

0.01 mA DL F.
3. BR 5118
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Figure 1. (a), (b) SEM images of LMO nanofibers. (c) XRD patterns of the as-prepared perov-
skite LMO nanofibers. (d) Schematic illustration of the super-exchange interaction mechanism

in LMO

B 1. (a), (b) LMO 4KEF4ERY SEM Elf&R. (c) LMO GuKeF4ER XRD Eik.

BRIREEERIEIREE

(d) LMO

K 1), Frfil#& i LMO 2SR — 4 GR A 4e 50, AF4ERTEiRE, P ERZN 210 nm
(¥ 1(b)). Z—ELEMEAE PRI, AR T REE L SEAEEA A R, GORG4EH AR
FER =4t S LS, ARk R . X SFERATHT(XRD) RS (] 1(c))#MH, FEM AT SN B 5 IEACHS
BRI 25 1 LaMNnOs AR E - (PDF#75-0440) 58 4 W) &5, FLA W 82 31 % IR U6, 11 SE )& B T 41iAH LaMnOs.

IEAh, LMO FRAETLE 188 28 #eAH BLAE 2 FSe Bl 715 2 5 AL DhRE I DGR 2 — (] 1(d)). &AE
FFZET Mn®* 11 eg HUE S O 1 2p PUE 2 MR SREUE RS . 7EH88L0 Mn-O-Mn HooH, H4R
Mn®* & FIl I A B T 2p BUE R A eg BT =X B 5440, WAL FBEE5 I Mn-O-Mn #4252 B 384k

I, NRPRRR AL T A R A e
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3.2. LMO By i B 5947
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Figure 2. Visualized adsorption test of the LMO/MWCNT and MWCNT
B 2. LMO/MWCNT F1 MWCNT &Y AT 4744 I Bt S2 38

VAL LMO X ZERAGEE AR BAEF, o Jeidb AT T AT A B S IR SRR . il 2(a)FR, M E
MWCNT £ LMO/MWCNT & & L3 A IMAAH R FE ) LioSe i+ . #& 2 h 5, LMO/MWCNT £
T N (U 2 2 T MWCNT K% (0 FR AL . %45 SRR ] LMO %o 22 B db ) B AT Sk 24

HIRNRFLHN Z BRAC Y AL BN )%, E— 20 R LioSe X FR BB EAT IR 22 ik . 4]
2(0)Fi7R, LMO/MWCNT F K I HH I 25 386 53 1) S0 A k00 i P R0 R B R PR e TR A, R I 2% Al LA B R )
LA AL BN 15 S BRI A FE RS . AR R A B E R T LMO A (1R A e AH B
YER, ZAERAMNRERE T RN T ) i e 8%, ARk 1 6 2 B4k v TRl A R B 5 0540, AT e
AR R N B 1%

3.3. LMO Bt IEAREIEh 715

RNEGE LMO/MWCNT &4 PP RHEELER b i AL S2 AT, E5E7E 0.0 mV-s T (4 R 22 R 5
AT T HERAR 2R (B R 5 1 1.7~2.8 V). W18 3(a)ffizx, LMO/MWCNT/S HiFEZ) 2.34 V £l 2.02 V
Qb 53U T ST BT (I B0, a3 IR T Se 1) VA MR BE 2 B A A A AR DA Rl — B RS LizS2/LiRS
FIEAL; fEZ) 2.40 V RIS B —ANBH B AL, SR LioSo/LiS M E B AL fE. 54l MWCNT/S H
WAL, LMO/MWCNT/S [k Ji i v A7 B 5y s A I B BRI, SR LA S /N AL B (AE = 0.37
V). [FfF, LMO/MWCNT/S U i 5 5 5 35 5 T MWCNT/S Hi i, #1256 B H B A T AR I 2 i e i
W 115 . NdE— D3R R BB I 2 R, FRATE S [ 18 2 R0 P 8 gt AT 17 eV A (] 3(b),
3(c)). ZEREW, BEEFREEIERE, LMO/MWCNT/S HLHR IR FR BT, WAL mAs /N, 0 3
H& BRI A7 Fe B SRy BRe 71 B 3(d)~(f) 73 AR T8 Ruv Ro Al O XN F 36 3E /K i 26,
LMO/MWCNT/S 7EATA [ NP SR 1 3 I 1 FEAR B FE R AL, IE B L Ae 8 12 2 TR 2 B Ak e fh i 72
HRTE AL RE 22, I S N RR[15] -

NE BV AT 26721 LioS DIBUT IS, FRATTIF R 718 A IR . 75 2.05V FI1E AL
SR, A0S E - A R 2R (1 3(9)~(h)). LMO/MWCNT HEARAEZ) 2547 s I ik B4R FLL (41 0.47
mA), T MWCNT FEAR [rm o7 &5 25 IR 9%, I fE FLIE () 0.32 mA) H B [R] SE K %2 ) 4170 s. LMO/MWCNT
PR VAL FELAL HE LSS R K IR AT, R LMO R PRI T LioS HITEAZS s #s . FEME AL, Fifime
N7 RS B T HAL P IR M BE 22 K. LMO R 5 13 VAL ST X Z 64k r= A ROR b, N
LipS #2407 REAAZ 0, T2 BRI BUZ BT 5 I RE 34 22 o AR FELR - B TR T H A3 2010 LioS Ut
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N &, LMO/MWCNT HERRA 3] 342 mAh-g™, T MWCNT HIAR ) 292 mAh-g™ . B8 & i i F i
5 RPIAA EHLFE U] LMO AU 7 il 72, WAL TIRLEM LisS A K30 /1% . MWCNT &
HA RIFRH T TR 7], (EHREN 2R E S, S TEA IR, S2 LS IZEE H.
B A ea. M2, LMO fENESERT AL, AR &R AL S 2 B AR RUR AL A AH B
VERT, TIRE o AN FEAR ) R B 1) 2 TR e 7%, 51°F LioS ATESUES . S 5IMTESRUIAR, T $e -84k
VIR R, HILIER LMO G Bt LioS Mz 54K, SRFBADFIE - AR

12 8
(a) 6 MWCNT/S (b) 0.1mVs' 0, (©) 0.1 mVs! o,
LMO/MWCNT/S 10, 9 02mVs'! 6 02mVs! P
44 : 03mvs! 4 4] 03mVs! 7
@ AR 29 04mv s’ / z 04mV s
g 21 H : g 3] 0.5mVs’ g 21 0.5mV s’
g : i E &
= k= k=l
o 04 o o4 15} 04
=} = =)
32 ' 3 3 21 . /
b R, 31 4 ¥
, / R, 4 v R
44 , 6 V A
2
. 0.1mvs’! 0 R, LMO/MWCNT/S -6 R, MWCNT/S
16 18 20 22 24 26 28 16 18 20 22 24 26 28 6 18 20 22 24 26 28
Potential (V vs. Li/Li") Potential (V vs. Li/Li") Potential (V vs. Li/Li")
238
(d) MWCNT/S (e) 208 MWCNT/S f) MWCNT/S
247 LMO/MWCNT/S LMO/MWCNT/S 233] = LMOMWCNT/S
[ {2206 i
=236 =204 =
a a
g % 2.02 g 2371
2235 ES S
2 2341 2200 2
g 233 g L *§ 4
Q <227 |5} |5
£ g g
2321 104 ] 230
. Peak R;: S;—>Li,S, Lon Peak Ry: Li,S, —>Li,S Peak O;: Li,S —S;
03 02 01 00 01 02 03 04 02 00 02 04 06 08 10 02 01 00 01 02 03 04 05
Log i (mA cm?) Log i (mA cm?) Log i (mA cm?)
038 0.6 . 40
(2 LMoMWCNT | (h) MwenT | (i) MWCNT/S
LMO/MWCNT/S
051
—~ 061 —~ 309 Rg R, Warburg impedance
< t=2547s <04 s
2 ; E t=4170's = _‘:“El_”j—
= Reduction of Li,S. hut ; <
g 04 Pl e g 03 i Reduction of Li,Sg ro/ 201 CPE
g Precipitation of Li,S = N
5 A 342 mAhg 2 5 02 Precipitation oflles '
0.2 7 292mAhg 104
ISeduction of Li,S, 0.14 L _Reduction of Li,S,
0.0 . — r r 0.0 . — . 0 . . :
0 5000 10000 15000 20000 25000 0 5000 10000 15000 20000 25000 0 10 20 30 40
Time (s) Time (s) Z' (ohm)

Figure 3. (a) CV curves of the cells with different cathodes at a scan rate of 0.1 mV-s*. (b)~(c) CV curves of the
LMO/MWCNT/S and MWCNT/S cathode from 0.1 mV-s* to 0.5 mV-s™%. Tafel plots derived from (d) peak Ri, () peak Rz
and (f) peak O1. Potentiostatic discharge profiles of cells with (g) LMO/MWCNT and (h) MWCNT/S electrodes. (i) Nyquist
plots of cells with LMO/MWCNT/S and MWCNT/S cathode

& 3. (a) FERIEHRMBIE 0.1 mV-s i HERETHEIFRZMLZ. (b). (c) LMO/MWCNT/S 5 MWCNT/S IEAR7E 0.1
mV-stE 0.5 mV-s 1 i E R EIR R ZMLZ. (d)~) PRETEEE R, TRIE R SELIE O 4F|HIEFER
& (g)\ (h) 2HIETF LMO/MWCNT 5 MWCNT/S EERAVIEERMMEMZ. (i) T LMO/MWCNT/S 5 MWCNT/S
EREERFE

UbAh, JE I EA S BTG AT 1 AR AR S AR SR (1) 3(1)) . Nyquist B A v 4 X [ BLAR
XN AT e B HLBE, A X B R R BB T EUIT e . AR B AL A O B B A S
LMO/MWCNT/S IERK ¥ Hafar e # i FH y 18.9 Q, /T MWCNT/S HiBK (1) 24.1 Q, [RIIFF LMO/MWCNT/S
IEM B A S BER) Warburg #4238, 15 B H A S BRI T R R 3)) /) 2 S5 AL I B S 1 BOs 2 [16]. DL B2
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RILFEFRD], LMO 5] NREH R T R St AT S SRR ), X —J7 VR T aker
YELERPTIE R IE S T R4S, 55— J7 IS LMO H Mn-O-Mn i 52 46 4 F BT i) (1 2 1 FB 5 4546 22
RS BE I OIAR G, T RIS T 1 BHAR Ht R 2k o ra AL 2A P e

3.4. LMO B IEAR BRI B
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Figure 4. (a) Rate performances of LMO/MWCNT/S and MWCNT/S cathodes. Galvanostatic charge-discharge profiles of
the (b) LMO/MWCNT/S cathode and (¢) MWCNT/S cathode at various rates. (d) Initial GCD curves of different cells. Cycle
stability at (e) 0.2 C and (f) 1.0 C of different cathodes

[ 4. (2) LMO/MWCNT/S 5 MWCNT/S IEfRBIfSZRMEEE. (b) LMO/MWCNT/S IE#R K (c) MWCNT/S IERRFAERE(EH
THIERFREMZ. (d) FTREMMEBFMERLZ. (6)0.2C 5(f) 1.0 C BRZEE T AEERMEIREEM

NATH S LMO/MWCNT/S IEMRIGHEERE, BATRGNR T HARGE I 5EAFet. |k, 7£0.1
C % 7.0 C [A[H L% B R HEAT A5 R M REMR (A 4(a))s LMO/MWCNT/S HLFRAE 0.1, 0.2, 0.5, 1.0,
2.0. 5.0 f1 7.0 C NP0 L 8 5 5 il iA F) 1364, 1145, 1086. 1028. 990. 935 #1901 mAh-gt. &
FE R THIEAE MWCNT/S HUARTE RS54 T A SRR, MM FARE 2R T ER 7 BCa dh Ze it — 0
PR T HIR SRR 4(b), 4 4(c)). RFT LMO/MWCNT/S Hibl, BEU#7E 7.0 C #mifs R, Higuhh
AR R FF IR RPN LR, 2l KB S B 2 A I AR B, B SRR, SRR
R N Bh 5Bk . AL R, MWCNT/S HUARLE IR R 7 SRR AE RSO . AL 2 B k. &
A(d)XFEE T R RRAE 0.1 C FRUE B S i ZE . LMO/MWCNT/S Ha bl FEAL SR A B 258N, IF HL78
FL AR IR AT BE AR . XSS SRR, LMO AL TR RE B8 G R 2 B 1 B IE SR R BiBl )%, PR
FRTCHR I FE P ) BE R FE

KAE IR e V2 7 S A F it S FH M P B R bR . 72 0.2 C VRS BE R AT R A IR (1 4(e)),
LMO/MWCNT/S HRVIMET A A 1225 mAh-g ™, B RFFRIA 87.6%, W3 T MWCNT/S HLRIT
71.9%. TM7ESE Ff 1.0 C LU FEFA 500 IR (K 4(F), AHEFFELE 0.055%. 52 M, MWCNT/S
R AE AR [F) 26 A B 25 B T 0 T 9 TG4 (0.087%) o L3RI 57 (A5 5 S A PE BE AT UH AT LMO [ kRR 45 44 55
HFREE . — 71, —4BESGURA4EMN R4t 7 =F & FE AL S 5w B e T
M, LMO @i [E A i) Mn-O-Mn BEASHAE FH cHE T ORER 2 . OS5 T MR AIE BT 5,
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BE T B NI RE A ) AT AR RS, S I IR R AR AR O R TOIRES, AR TR 2 IR TR B S A
Fefbzh i XA “ =4 T g% - SR - AL RS FIALAD, SRR OR TR R
P T IR A ETEHE -

4, gEip

AW T IE F YT 223 45 T LaMnOg 85 ERT AR £F 4k, R TEEGT s b IEAR AR 1, RGBEE
THAAAT N AR IR SCIRRIT, ZAPRIA U B = 4L 4R 5 R T T R i T ik 5 a5k Ra
P, Sl Mn-O-Mn S A PG 50 1 0 ] AL B R AR, BRI RE R, AT SEBILX 2 AL 1 e 2K
WR B 5 D AR AL o AR IR R TR R B R TR R S R (s A kR, TESE TR T T ORI A
BSR4 B S S8 g 2707 T A e o IR TR R AR R i 3 A S AT T 1) < R A 1
MOEHRAE 7B KR, thoiE— DRI R SE SRR R B R M RE B BE SR FITRE 1 AT AT %42
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