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Abstract

The research methodology is as follows: Multicolor carbon dots (CDs) were synthesized via a sol-
vothermal method. CDs/SiOz composite phosphors were subsequently prepared using a sol-gel pro-
cess. Furthermore, to enhance the luminescence intensity of the CDs/SiOz composite phosphors, poly-
vinylpyrrolidone (PVP) was introduced as a surfactant. Through the hydrolysis and condensation of
tetraethyl orthosilicate (TEOS), the CDs were embedded within the SiOz matrix. The incorporation of
PVP effectively regulates the microstructure and interfacial properties of the composite. The functional
groups such as C=0 and C-N on the PVP molecular chains not only prevent the aggregation of CDs via
steric hindrance but also form strong hydrogen bonds with the silanol precursors. This interaction
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guides the heterogeneous nucleation and growth of SiOz on the CD surfaces, significantly suppress-
ing the homogeneous nucleation of TEOS.
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1. 5|15

T 2 (CDs) R AL S AR O BB R I R e v P R e P A A A 25 1 T % 32 03 [1]-[3]. B T HLAE
FANRI TR H 2K, SR EZMEIEIE, DORRIRATIRAGTERR . IR HE 0SS F1 & R
W (K FE S MBbe2iAE) kil % CDs [4]-[6]. Btk @45 (g B Bi)FI 4@ 15 42k 4% CDs (116
SRR RE AT 701 % 3208 H [7]-[9]. CDs & — Ml R I R4EmR AR RL, & BA RAFIIKE . 1RE
PIEE MR R0 S PE[10]. 540 SRR T ASAHE, CDs Hifik. & A BT HRMAL, #h T HSE
JE RIS AR, FFE O F R BEE11]. BAEAEMIEY: . RS Gl TRt )
B12] (135U E M . SR, 7EFEZST, CDs MaRATEMARKING, NRERSIOHK
(Aggregation-Caused Quenching, ACQ) XM [14]. X &K ATERIZ T CDs [ i B R B8 Sk )y, 52N
(1) -m R BLAE FH AR S R B e 22 S BUL DU FE 1835 PRAREL 28 58 4V 2R [15]

N TR — M, AR SCHREH T “IEJRBRE T mg, RDE CDs $ 5 U — R E A, R
BRI B BHRR AR, A 207 1k CDs I B, A 4ERe F RO U . FEARZ I, —HAHE(SIO)
JRBLH RIS, RER MR S B B I0R, EE DL SiO MEERR SR K NAELE[16]. th4L, SiO;
H& 5 T AR (b5 Ae0e TR 7 55 2 RRVE[17] o X SURE PR H SO RAL 52 HLF 2
HTF5 A WAR IERES I 25 R I 5 AU S B )2 BA R 2 —[18] [19]. ¥R - BEIIE & —Fhfai o &0t
BRI TTE, T IETT )& & A IR MRS R [20] [21] - (EAL SR H0VA IS - BRI R AT AEAE TS A
AT BTG R51F, IERERR ZFR(TEOS) KK il 15 46 & M i R A A R A= R Az [22] . TE R
B4l Sio, Wik, KUk, wnfildahl Sio, #RTE CDs B R A 5EK, EHl&mEReE &7k H
OB RIVETERIMGIN, Nffe R iR gt 7Bk, o, R Mg elE(PVP) & —Fi A C=0.
C-N 1 CH, B R [23] M R R, ToRER[24] AFBS 7 HU[251 R & Hoor 78k B A IR 454 I - 3
LR 1 ST R 35 A 77 PVP BB I 2% 1857 BN [26] 57 1 4R A b 1 5, L3036 oy B I o RE 5 e ML IR
WA, 51 S NITER e S iz SR . 28 b, AU R BEE AU O B VA R
il & i Z 4 CDs, 1E PVP {ERARMIEMEFRT, @dia e - B ES % 1 CDs/SiO/PVP &7k -

2. SCIGERSY
2.1, SRR SIS

R (CoHgO7)~ JRZE (CH4N20) N,N-— F 3 P % (CaH/NO) . IERERR LR (Si (OCoHs)s)« To/K L1
(CoHsOH). AR (HNOs, Ji & 721 10%) 5 Z St v Bl (PVP) o
P AR S B AT MR A (B AR SR B A A A IR s wl ) o IR 5 2 (ST TR A BR A ] .
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TR FALR R ZFIIREEF A R A A R SES B B (H AR PR S X 8t H
FREDEAN (35 E ZEER KA RBIB A 7)) 8 Bk 20 Ah G (35 [E ZE B/ R BHE A R . AN L 6 E T
(L TCHT IS A BR A A BB DIEEEA(PL) (b A OB AR A R A A
2.2. CDs B#l&

FrE R AR ZAE NN AT, FrEIRVE AR, IREEANRIE, MERSREFRELA 1:2, A
25 mL 1) = FR IR T, BRI S, SR EWREE /708 20 mg-mL™. 40 mg'-mL™t. 60
mg-mL, CERC U R N R UG A AN TR I N 28R, K s N 28 BT 160°CHE IR AR
RN 8 h, AHIEFEMNEE, BRH 6., EOME G CDs, 40 5I% N CDs-A. CDs-B. CDs-C £
2.3. CDs/SiO, E &R MBI Z

# 20mL TEOS. 30mL Jo/K 4. 10 mL 2 517K 5mL CDs ¥ BIN N KR ib F B3 HE 45 2 15 min
-], BN HNOs /E AMEALT], K pH {E Y 2 3~4, IR SVETRIE s e dEas -,
VHRLJE BE 2 50°CHESIPEEE 10 min JEUHEEEEA 30° CHA: it ZIR SV BT B, Bl 5 T 2 fa &,
1831 CDs/SiO2-A. CDs/SiO»-B Fll CDs/SiO»-C H-A5 68
2.4, CDs/SiO./PVP E& RS NHIZE

# 20mLTEOS. 30mL /K ZFE. 10mL 25T 7/K. 5mL CDs ¥+ 0.05gPVP i A B 3t 78
FediitE 15 min 2805257, BN HNO; /E ALK pH (ER%E N 3~4, WHiR A 1A WUSCE AL In#i i 714%
PES b, RS S0°CHLIHEEE 10 min JE IR N 30°C B 2R A VA ORI T A s A4, 153
CDs/SiO,/PVP-A. CDs/SiO,/PVP-B Fi1 CDs/SiO./PVP-C 445tk
3. R5iT1ie
3.1. &f& CDs &IE

1(a) 4%t CDs MFOIL R . MIE 1(a)nT LA t CDs [ AL IEAE {K U 480 nm (CDs-A).
520 nm (CDs-B)# 530 nm (CDs-C) £ E LA B, BT IHEH AEMBT AL, B RGBS it AR 4k
BRI 2 AR P A AZ 0L . R RSN 5 B R B S R HDIRAS, XM AP L P s S 8 R
IR A FE[27] .
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Figure 1. Fluorescence emission and UV-Vis absorption spectra of carbon dots
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1(b)y CDs HIEAMNEUERE, M 1(b)ATLAE H, X-F CDs-A fE 315~370 nm i [l 4 H B0 2.1
REE RIS UG , I 50 A PR T 25 0« /NS RURE  FRTHAS I B m-m* (R BRIEE F A 9% 55 CDs-A Et, CDs-
B Al CDs-C HIW UG HETE 385 nm~540 nm i [ P A8 42 21— MR 58 IR I, Xl RE & T CDs H 3/
C=C B K+t n-n BT &7 N ~F RN 38 1 [28]

3.2. CDs/SiO./PVP B AT TRAE

AT B AT CDs/SIOPVP &R SR LR, FATHAT T B BT EME(TEMEIL. &
2 A F 20 ML TEOS f#fill % )75 5 CDs/SiOo/PVP-A B &9 TEM B, MWEFRLLEH, Sio, EHuUIR,
A F R RN S0 KT HIEEIR FE, TEM B bR B0 5] 2> 85K CDs, el H Sk Sio, 3
FNES, HEWEAREISR, X5 PVP K4S EABH > BUEH —#.

106 nm
e e

Figure 2. TEM image of the CDs/SiO2/PVP-A composite phosphor
2. CDs/SiO2/PVP-A 8 & F L H TEM B

N TIRIE PVP ER &V SO A BIE R, FRA TR RE fhadi AT 1 205 B (FT-IR) 04T,
3ONFEMATEHE FT-IR B3 . 7E[5] 3 1, CDs/SiO,-A E &% H il CDs/SIO/PVP-A E 4 7 ok BA ZAU
e RER]: 570.22 cmt [ ISIE AT 664.6 cm L kb (IR IS & T Si-O SRR, EERH T SiO)
VPUTI A 4544 ; 791.98 et Ab FIWR WS U5 )& T Si-O S R0 AR 4R, FESRA T Sio, f. 2+ 1) Si-O-
Si, Ui TEOS /KM Ja =AMk sE 2 (MR A T KGR & N, X4 SiO, P44 4211 ke, 1066.36 cm™
Ab IR W U & T Si-C/Si-O-Si ##[29], uEsiE At TEOS /K =¥)5 CDs K IiH Rl K A AH BAR
M, TERT Si-C 3L, £ CDs 5 SiO; LM M fAE 454, 3428.03 cm ™ &b (1 Fa R Ui i 19 J& T+ Si-
OH B 4aIRs), EA T TEOS /Kid)E, Ho i LB K TR . 962.85 cm™ IH/EF C-
O B MM 4EIRS), 1386.12 cmt AL IS I ) & T C-N BRI H4EHRSN, 1440.36 cm* &b (W g 158 F C-
H 825 iRk, 1663.25 cm AL si& )& T C=0 B M4EIRs0. LA ERIBEIEY] T CDs MIfEfE. A
H PVP FREML AL B 4 DRI, 1670 cm 4k C=0 HIHZEHRENIE. 1290 cm L 4bf C-N 14
PRBhIE . 2950 e 4b ) C-H KRR 4R R SN IE AN 2870 e 4L ) C-H AXFFRHZEdRENIE, 15 H T Sio, 35
A B (RVRFAE RSO SR LR, LA PVP [RARFAE MR SO AS 5 75 L0 AR ST RS A3 B AR I AL G 7 P i o
C=0. C-N PIANERAHNT SR EEIEH /N e EXS EE R 2% it 26475 7] LA 3] 1659.33 cm* &b A7 fE 1211 PVP J5
KT N, XZ&HTF PVP H C=0 M§EN. 54, 5 CDs/SiO-A E &5k AR A,

DOI: 10.12677/ms.2026.162037 186 ey PR


https://doi.org/10.12677/ms.2026.162037

Xk S

CDs/SiO2/PVP-A

B UOCHIAE 1498.7 cm ™ A —NMRBLIKIHTIE, 1208 T)E T PVP L H 3L (CH.) R 25 i R

5, HAIGAIERAFER PVP 2 FHEE H C=0 5 SiO, # 1 1) Si-OH T i an A8 M 4%, ZE A0 0
ERIBRE T PVP > FREFIE B, T3 CHEERMIRSEET &, MIMIESE T PVP 5 SiO, 2 [AIfF/EE 'R

B S 4 5 [30]-[32]
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Figure 3. FT-IR spectra of the CDs/SiO2-A and CDs/SiO2/PVP-A composite phosphors

[& 3. CDs/SiO2-A E A7 FL M0 CDsISIO/PVP-A E &M FT-IR Eit

AR CDs/SIO-A H &5tk Al CDs/SIOL/PVP-A H &5 6k HE4T X STt 1

REWE 2T (XPS).

XPS i 4 fras, LT EANBRAS S5, 550%f M2 O 15 (530.0eV). N 1s(400.0eV). C1s(283.0
eV). Si2s(153.0 eV)AI Si 2p (102.0 eV). ¥ PVP, Hil & e TR AROR KL A, (HIL 2 #F XPS
EEER T REAINESER,
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Figure 4. XPS survey spectra of the CDs/SiO2-A and CDs/SiO2/PVP-A composite phosphor
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(a) = C=C/C-C(284.64 ov) (b) s C-5i(283.08 ¢v)
1 C=0/C=N(287.6 ¢v) 1t C-CIC-H(284.8 cv)

o~ | -C-Si(283 2 ov) o~ | C=OMN-C=0(287.02 ¢v)
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Figure 5. (a) and (b) show the high-resolution C 1s XPS spectra of the CDs/SiO2-A composite phosphor and the CDs/SiO2/
PVP-A composite phosphor, (c) and (d) show the high-resolution O 1s XPS spectra, (e) and (f) show the high-resolution N 1s
XPS spectra, (g) and (h) show the high-resolution Si 2p XPS spectra

5. (@) (b)7 CDs/SiO2-A B ARNHFN CDs/SiO/PVP-A EETRAMEI C 1s =4 #% XPS gEi, (¢). (d)AO Is&
DPEXPS KK, (e). (DA N 1s E53¥E XPS BEIE, (9). (h)J Si2p EH¥E XPS AL

5(a)F1&] 5(b)#& CDs/SiO-A H &5 tH Il CDsISIO/PVP-A H & 5K C 1s TG R B 405 XPS
Hi &, CDs/SIO, &7 Yeh B i = /Mg, fU4% C=C/C-C (284.64 eV). C-Si (283.2 eV). C=0/C=N (287.16
eV). C=C/C-C (284.64 eV)FE W] | CDs [If71E; C-Si(283.2eV)ilEM] T AEWE L FEF, AILK{A TEOS 5 CDs
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RIMRAENEH, TERURET C-Sif#, R T CDs 5 SiO, B JiAA7E L ##I%4E; C=0/C=N (287.16 eV)%*
7 CDs KIHE & AMEEfel. CDsISIOPVP-A &5 M B HH =M, fFE C=C/N-C=0 (287.02
eV). C-Si(283.08eV). C-C/C-H (284.8 eV). C=C/N-C=0 (287.02 eV)JiE(5 5 £ T PVP 4> Tl it
Hf¥ C=0 &5 SiO, KIHi¥ Si-OH JERRESE, XM EAEMB ST C=0 M T =, FHILEREK,
5 C=0 g HEA, X—55 FT-IR MW fF4&; C-Si (283.08 eV) I HEZ LT CDs/SiO-A &7
Sk B R R U, X — I GAIESE PVP )25 R A7 BN 5 SR TG Rl 7 TEOS /KA =45 CDs %
M I A A, B T RS R O RIBEER; C-CIC-H (284.8eV)E I T7E PVP I JG, 24t T K&
C-C Ml C-H #, 454 REM 284.64eV RIUNIFEZE 284.8eV, ZEEH S1BA C-C/C-H PR UESE & it —5L,
K PVP 1) 5] NSl i B2 A 2R B B Aa e

Kl 5(c)ffE 5(d)sE O 1s JLEM M/ HERE XPS Jilk, CDs/SiO-A &7tk A =%, Si-0O
(530.25 eV). Si-O-Si/Si-OH (531.44 eV). C=0 (532.07 eV). Si-O (530.25 eV) 4 AEIEIFSE CDs % B fg
15 SiO, # 5 (Al fEAE SR A TLAEH ;. Si-O-Si/Si-OH (531.44 eV)iX /Mg & SiO, 4% Si-O-Si 4 A1 Si-OH 41
FIN; C=0(532.07 eV)H it T CDs [RIfE7E . CDs/SIO/PVP-A E &5 ek 4 =AM, Si-0-Si (530.27
eV). Si-OH (531.37eV). C=0(532.04eV). Si-O-Si(530.27 eV)I& i i & ¥ = T CDs/SiO, B & ek Erh
[Rx MU, ZREH PVP [ S 51 S/ERERE T TEOS & MK 546, MR T RAEH R 450
[ Si-O-Si W &%, HIFsK PVP Xt SiO 3 i 1 iz B K B AR E A

Kl 5(e)fTE 5(f)f& N 1s JCER IR HEE XPS Jtil, CDs/SiO-A H &5tk A =AM, HEiE N
(398.92 eV). MM N (397.54 eV). f1524k N (400.93 eV). CDs/SiO./PVP-A E&w ek BIh AR,
24k N (400.76 eV) FIIEZ %((398.82 eV) . 54k PVP I BEIG A RIS & REAHLL, 2GR T4 eV, X
UEB T PVP [ C=0 5 SiO, ==& ] Si-OH Tk 1 s Ui, S A FH 331 C=0 i\ i1 = % BE 1] SiO;
(1) Si-OH fw#%, HMifEE C=0 BEHAIEMMILE R T E BT =% B . BTl N1s B BUR T
MREE LR T .

Kl 5(g)FIE 5(h)#2& Si 2p TR RIE T HEE XPS Jhil, CDs/SiO-A EE& 56k EHH =4, Si-C
(101.35 eV). Si-O-Si (101.92 eV). Si-O-C (102.63 eV). CDs/SiO:/PVP-A E &5tk B hE =A%, Si-C
(101.25eV). Si-O-Si(101.93eV). Si-O-C (102.39eV). ¥l PVP J&, Si-O-Si [fjl&sR 1658, KU PVP 5
T SiO, IR R A 5 A ., FERR T AC TR o s SR T3 — 1) SiO2 L8 L, 1T H A2 NI AT T
§5, UEM] T PVP A BHRE 1 SiO, BT Sk iA S5 CDs I 1) B R, MR RHbAMH| 1 Si-O-C #1 Si-C et
BRI Ao

Kl 6(a)~(c)/r 2y 2 mL. 20 mL. 30 mL TEOS il %5 . k€. 3{ta CDs/SiO/PVP & &5tk
1E 365 nm AN T IO R SHEE, 5 CDs MRS g E AL, ¥ H I —4M T 525~600 nm & [
WIARBLT L R I, HAZIEN B 5 CDs MIRHIE R S IEAFE CEL (7 4 CDs % ~525 nm, %5 CDs %
[i~600 nm), 4 TEOS H EHUIKHT (2 mL), SiO, F:JACHAR FERUIC. A MAHXTEAS, SIS ELR B CDs %
RETRFERI RS, AR S BSR4, B35 TEOS FI B8 INZE 20 mL A1 30 mL, iZ2RE1IE 155 5%
BENE, HPmii s, AT, X—MRr 78Il G T CDs 7ENI T SiO, 545 7% i)
RS W 1 5 7 S5 %8 (Crosslinking-Enhanced Emission, CEE), %248 /& [l & & YAk 40 T8 50 32 IR 51 K 1)
EPGERILS, (R - BRI RE T, CDs RIHMEE. RILEH AL S TEOS /KMfA e R 5
(Si-OH) 2[R i 2 S M A BE N 45 [33], FF itk — i@t K 46 T8 LA 2Bk, S8l T CDs 5 SiO, B[]
BHRAFER: . XA E F B BRI 7 CDs R A O 4> T W ie i SRz B B, FRE Tk
WA R REE RS, (RAEIOR S T 2 B R T R R, RPN R I 5
BEE TEOS M 2mL 3% 20 mL. 30 mL, SiOp &5 I AC Ik a5 25 FE FF A K, %) CDs & ] 1) %% [A]
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[ 7 A 8B B A 2 HLA8) 5, A ROk T RO L I RE B TC P ARFE, BT O R I = FE (FWHM) B

WA VEESRAL R ER T I, BRI S I A SR L TR TEOS & MR 1AL

k., /& CDs 5 SiO, 3 i BRI idh 238 BRI 51 )k CEE R4 (1) BLEEGIEAIESE - < 7 A =Fh i /) CDs/SIO;
G R IH I CDs/SIOL/PVP B & 56K 365 nm LM GHUR T I SEY K .

(a) CDs/SiO/PVP-A | (B) —— CDs/SiO/PVP-A (@ CDs/Si0/PVP-A
CDs/Si0:/PVP-B CDs/Si0-/PVP-B —— CDs/SiO-/PVP-B
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Figure 6. Photoluminescence (PL) emission spectra under 365 nm excitation of cyan-emitting (a), green-emitting (b), and
yellow-emitting (c) CDs/SiO2/PVP composite phosphors, prepared with 2 mL, 20 mL, and 30 mL of TEOS, respectively
6. (@)~(c)773lA 2 mL. 20 mL. 30 mL TEOS #l&MEE. HFE. BE CDs/SIO/PVP EERINMTE 365 nm &

THIA SN IE

(b') (c)

Figure 7. Photographs under 365 nm ultraviolet light showing cyan-emitting (a~c), green-emitting (d~f), and yellow-emitting
(g~i) CDs/SiO2 composite phosphors and their corresponding CDs/SiO2/PVP composite phosphors (a'-i'), all prepared with

different volumes of TEOS (2 mL, 20 mL, and 30 mL)
E 7. ~E TEOS AAZ(2 mL. 20 mL. 30 mL) FHl&R(a~c)F &, (d-D&EE. (g~i)&E CDs/SIO 8 &R AR EXT

[IHT CDs/SiO2/PVP B &5 # (a'~i)7E 365 nm &ML TR LB

4. #Eip
AT TER FR VA B DU RE R IR B M R S AT BRI, AR M BRI, IR R, 7
PRI th A T 2559 CDs, 407 7 KW 5 R SR, SRR - BE3: 0L TEOS RTIRIA, FIH
HNOs IR KR, 1EZ I - KIR &V A & i CDs/SIO 8 &5, UM 7 CDs H &I %
W5 . R T ARALSER: , B 11 SiO, 2EVEBA A T i) ET R B, 5IN T PVP 1R TG, /b T CDs/SIO;
BRI EERS . B RGO RIR A SHLELT, BHLL TSR PVP EE AT
PURIE T SRR S IE R . PVP 4T RS BT RS 15 TEOS 7K MR 7= A AT E 10 0 T R o 11 L
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RI%%, X —HEAE ARG T SiOo ££ CDs 3 157 A % 38 1 3 2 18] 37 BEL AR AN F R A= RE 775 2
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