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Abstract

To enhance the sensitivity of ZIF-8 towards methanol gas and achieve low-temperature rapid de-
tection, this study synthesized Co-doped ZIF-8 via a hydrothermal method and fabricated resistive
gas sensors for performance evaluation. Among the prepared samples, the 3% Co/ZIF-8 exhibited
the optimal comprehensive performance. The results demonstrated that, under the conditions of
160°C and 100 ppm methanol, the response value of 3% Co-doped ZIF-8 reached 12.1, which was
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significantly higher than that of pristine ZIF-8 (3.2) at the same temperature, indicating a distinct
sensitivity enhancement effect. Meanwhile, the optimal operating temperature of the Co-doped sen-
sor decreased by 20°C compared with that of the pristine ZIF-8-based device, suggesting that doping
modification helps reduce the effective energy barrier of surface reactions involving methanol and
expand the low-temperature working window. In terms of dynamic response, the response and re-
covery times of the 3% Co-doped sample were shortened to 9 s and 10 s, respectively, outperform-
ing those of pristine ZIF-8 (15 s and 12 s). This result indicated faster Kinetic processes in the stages
of adsorption, reaction and desorption for the Co-doped sample. Overall, the above findings confirm
that Co doping can simultaneously improve the response magnitude and response rate while preserv-
ing the inherent advantages of the porous structure of MOFs. This work provides reproducible exper-
imental evidence for the low-temperature and rapid-response design of MOF-based methanol gas-
sensitive materials.

Keywords

ZIF-8, Gas Sensing, Methanol

Copyright © 2026 by author(s) and Hans Publishers Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0

1. 518

R (CH3OH) /& — 2 8L A (1)3% % 1 45 H140 (volatile organic compounds, VOCS), |2 N F 46 T 51
WA BV RIE R, HARMN RS N EREG R EE. ke, EEPNLZ S
55 RS PR (OSHA) FILE HIBE Y 8 h I [A] AN 1 25 28 V- % 2 FRABL (TWA PEL) N 200 ppm, 4y FIEE ({4 A%
RIS BB SRR B IR TARE[L]. Rk, PR RPN N . BE B R AR R
FF 2 A 0 2 A2 LA 2 TR R

LB AR AL B R S5 M TR B 5 T AR BRI AR mT 3 i 4 ) 2 0 9, (B4R G & g A ) Tk (metal
oxide semiconductors, MOS) 7t H1EESE VOCs A I 475387 3k [ I T AR iR FE e o e 1tEAS 2 S BE TP 55
W, BRI T HARTHFER FH[2]-[4]. NHETHERAFVERE, ZLMRLS SR SRS 5 N SBUA R, s
SRR PR AR RE RN R R T RSB ) SR B AR T

4 J& A HIHESE (metal-organic frameworks, MOFs) R s bR AR . AT i FL42 A vl i B A S A B,
Pz AR SR B S M T IR AR [5] [6]. b, ZIF-8 BB LB S R AFa e, EAWeE “£
FLEHE - SRR Y E RSB 1, R SS SRR AS X SR AN SR T [ B3l /) 2% B B 7]

B0 FRREAS I, A B T IB IS M3 ZIF-8 AH OG5 A BRI S5 M4 e Bt S BTiR e AR - 491 4, SnS/ZIF-
8 P e A LE S IR R B X B AR S A SR R [8], 1T ZnO@ZIF-8 SRR K Ik B A & R 7R ] 528
S FEERTI, AT “SHES - 2L/ BT Y E SRR A E[9]. AR S HE— PR, ZIF-
8 YE N Z ALIAIE A 70 /£ VOCs Ui 2 b BoAT R A 38 FH (5] [6]-

BEAh, b 48 IS g RIS MOS RH S NAT & PR AMAA AL N e 22 BB F B, A
TR, Co$BA1) ZnOIZIF-8 5744 F1E FH I B A S ARSI o R 30 HE B vy o 7 i R B PR ) 4R AE
Y] Co (51 NA BT 38 9 F ] HE A% 4 5 3 S B PR3] [10]. AR, ZIF-8 5L SR E &R bk
T EEESAY BUS T THERE, W ZIF-8/MoO; B A1k 2 78S Mo b Fe e P 5 T FE B H AL 34 [ 14]

R TTTH, Co Z 5MIN4EBAL B HA ZIF-8 nl il id nl iz B ek fa e 14, NAEMRE: ZIF-8 1L
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SEFJERAE R IS 51N Co 3 AR OBt T 45 M3kt [12] [13]. Sk, 4F%F MOF 1742 4 )8 ik s i
MR RS LiR#E— e, MOF AR 2 45 & A 12, R SEIURIR . = R B VOCs #l i A 4%
WG [6] -

TEVLMZ, A “Co 2% ZIF-8” HT48MX Co 1£ MOF HiIRMA& b Be i) 5 A JT e FE AL 1E
TRAN N EEIRRRG, ZIF-8 BHUE 20 I A8 ZnO, HRLF B RERIRE T ZIF-8 fiTA 1)
Co % ZnO Z L& . BT I, ARSCRGH T AR FBE AR IR D dr U 12 8, FFPR I ORI 5L
,

2. SEWERSY
21 ¥

AR50 [ T T RFIE R AT . BEEREE(ZN(NOs)2»6H,0) . /K FHEE(MeOH, 99.9%) . 2- H FE bk s
(CaHeN2) THER % Co(NOs)26H20.

22. RS

FREL 0.893 g (3 mmol) Zn(NO3)2-6H,0 ¥ fi# T 20 mL FEE(MeOH)H 523 A; FREL 0.985 g (12
mmol) 2- F LK (2-mim) ¥ i T 20 mL MeOH H A3 27AW B, AR A S5iEW B 1R 5 MR & Ik
20 min, F#JE 0 Co(NOs)6H20, 4 Zn:Co A /K L4359 100:1. 100:3 1 100:5, Frfdt it 43 milid
4 1% Co/ZIF-8, 3% Co/ZIF-8 1 5% Co/ZIF-8. AFFAFKE e sbH L 5 AE T 5 =M E T 5 b lm
t, RS R B 1°C min (FHEE R THE 2 500°C, FEAE 500°C N RE 2 h, BH/EREY HRANE S

.
2.3. FAE

33 B 2434 (FE-SEM, SU70, Hitachi, Japan)Ai1i% 5 B 1 5 4% (FEI Tecnai F20), XHEE S HI4L
MEERIPEATRAE . K X STHRATHM(XRD, D/max2600, Hitachi) % 5 i1k 2 40 B HEAT R4

24. SiEERBHHIESNE

KBS MR R GOt il & AF b AR R R AT TR 9C . MR RG MR GRFFCE 25°C £ 2°C, HHHE
JEORFFAE 20% + 5%, KA 23 (80% N £l 20% O )V N 5K . A& ERERAE H AR AP TR Rg
KR, I Ra KER, ARG RBUE S € SCNEHTAE B bR S 1 e BEE S5 7E
2SR P A ELAE: S = Rg/Ra (AL ME KB Ra/Rg (8 JEMEUAAK) o Wi N2 IR 7] 1 52 B 1) 5 S FLFHL
EAZ AL, 9006HT FT A FRIET 1) o [R]— 2 AEAR 8] 2% A0 R MR =0k, B =N~ P (B A E B 2 A 45
2.

3. R 5L
3.1. SRS H

K 1(a)f@R T ZIF-8 5[ Co 5% LLBIFE M (1% ColZIF-8, 3% Col/ZIF-8, 5% Co/ZIF-8)[f] XRD 74+
B, 5 bRk A (36-1451, Zincite) #E4T X . XRD B SR, 55 Be ) BE 5 (AT 017 B 55 7 P40
45849 ZnO HIARHAER Fr(PDF No. 36-1451) = % —5, HARMEZH] ZIF-8 FHICHHENE, RUIFTINA ZIF-8 7E
Kb #Eh QR AE BRI A ZnO Al AIE Co 4% LLBIRE S ARG I 24057 Co AL,
YL Co LB 2 im FE  HEBIN ZnO Zikrh . 15 1(b)h 20 £ 36° M RFAE (1 JR 3 OR Bl . mT LA
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Figure 1. (a) XRD patterns of ZIF-8 and Co-doped ZIF-8 with different Co contents (1%, 3%, and
5%), compared with the standard reference (PDF No. 36-1451); (b) Enlarged view of the characteristic
peak around 20 = 36°, showing a peak shift with Co content, indicating lattice modulation induced by
Co doping

1.(a) ZIF-8 REFEIHIBZE (1%, 3%7H0 5%)A) XRD i%E, S5HRERSR(PDF 475 36-1451)
FEE; (D) 20 = 36 ALHFHELERIMIKE, REREMIMES S BT UMIERE, RARKBIREST BIE
A

Figure 2. (a), (b) SEM images of Co-doped ZIF-8 at different magnifications; (c) Overlay EDS map-
ping and (d)~(f) corresponding elemental maps of Zn, O, and Co, indicating the spatially consistent
distribution of Co within the particles

B 2.(a), (b) FREIBABH TSR ZIF-8 AREFRMIB(SEM)EIR; (c)EDS LB mE
B (d)~()* 2 #95%(Zn), F(O)FIsh(Co)TENHE, BREEETMAANRFTE—B D HHEHE

K 2(a), K 2(b)~ CoB2% ZIF-8 [¥) SEM %, 7£ 600 nm xR 1] WRE 5 i WAMCK 22 ok 40 i, i
B2 [BIAFAE— g B, Bk 2N 2 AR HOIR SR, R EONHRE 4 A B 2 IR SRR E . 1%
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Figure 3. (a) TEM image of the sample; (b) HRTEM image showing clear lattice fringes with interplanar
spacings of ~0.26 and ~0.24 nm, indexed to the (002) and (101) planes of ZnO, respectively

3.(a) ¥&HY TEM Elf%; (b) HRTEM ElfR R RBEMBIRIEFRL, HEEEEST 4% 0.26 4
KFNL 0.24 4K, SHIFREREMNFERI(002)FN(101) R E

3(a) WL TEM B (F5 R 200 nmy), AT WAL R AN 0 00 48 K R0ker S8 B T1 1 i) [T e g,
Wil 2 RIBONHRE (5 BT, R ARG — M2 LB K A FRE . ] 3(D) st B X 35 1)
HRTEM E1E (b5 5 nm), 7 LBV EE BRI G 26 80, W45 1 TA) BE 43 712497 0.26 nm 5 0.24 nm,
A4 5AJE T ZnO #1(002) 5 (101) ShTHT, 5 BHFE S R AZAE S5 df R 471 ZnO PR gt . PIAH Sk 26 BUTE
A — XS R A7 R AR LA 2 AR, NG S B B ER PR AL T R A 5 44 S5 T AR B

3.2. SHMREMR

w4 fios, Co BARESRILT ZIF-8 X HEEM A BIERE I T TAEE 1. &l 4()RAAFIB I
EEAGI AR (5t BT D 7 I 3, P S S TH I P ey, o 3% Co/ZIF-8 78 160°C ik B i mali B o 4] 4(b) EongsfhfEL
VOB R RS SR AT A, iR AR e B RR LR, UUEH B RIFMEM AR . 1] A(c)HE—D Xt
Lo T S FEIEN A FE, Co 152 FE M 7EAH RN A% 4 T Pl AR Ab i 252 5K FL B S ST BE . 4] 4(d) N
AN AR LU R EE SR, Co 35 4% 5 FRIE (KM LA 35 B SR 1, I — PR R M I SR AR

3.3. SikfERHNE

H T, MOF J& UM} AR A% S LB 3 3 DA DA RS T e T VB PR S i 5 U U 2 T ) e T S A
EJF S, TSR B TR AR I FECRIAmI N . Co % ZIF-8 J& T LLH T &4y £ T R A S
ARl RO R T Z A AR R AR ] LR MALER S AN 5 B

2 Co 57k ZIF-8 BTN, E 75 eI AEM BRI K ALIE A BE, I WA iR B 7T
JRE TN ERI(O, v O7), AERMEIBMHTHIRE, ARG T RABRES . 2R RRA:

0,(9) > O, (ads) €))
0O, (ads)+e™ — O; (ads) )
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Figure 4. (a) Response of ZIF-8 and Co-doped ZIF-8 sensors to 100 ppm methanol as a function of
operating temperature; (b) Dynamic resistance curves of the sensor during repeated methanol exposure
cycles; (c) Comparison of single-cycle response and recovery transients toward methanol for different
samples; (d) Bar charts of the responses of ZIF-8 and Co/ZIF-8 to various gases, demonstrating the
enhanced selectivity toward methanol
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Figure 5. Schematic for the gas sensing mechanism of the 3% Co/ZIF-8 sensor
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