Hydrothermal Synthesis of 8YSZ Nanopowerders and Their Sinterabilities

Baoan Fan^{*}, Jiabao Yan, Jianghua Qiu, Xiaochao Yan

Key Laboratory of Coal Conversion and New Carbon Materials, Hubei Province, Wuhan University of Science and Technology, Wuhan Email: fanbaoan@yahoo.com.cn Received: Mar.22nd, 2011; revised: Apr.12th, 2011; accepted: Apr.13th, 2011.

Abstract: The cubic phase 8YSZ ($[ZrO_2]_{0.92}$ · $[Y_2O_3]_{0.08}$)nanopowders were synthesized by a chemical co-precipitation method combined with hydrothermal crystallization treatment. The average size of 8YSZ crystallines was in the range of 7 - 8 nm and they were softly congregated with the aggregation strength of only 20 MPa. The as-synthesized 8YSZ nanopowders exhibited high sinterabilities, and they started to rapidly thermo shrink at 1000°C and reached the maximum shrinkage rate at 1065°C. At 1200°C, the shrinkage process was basically finished. When sintered at 1000°C for 8 hrs or 1100°C for 4 hrs, the block of 8YSZ nanopowders can be basically densified, whereas the block of 8YSZ nanopowders synthesized by water-and ethanol-washed can only be basically sintered to dense at 1300°C for 10 hrs. The high sinterabilities of hydrothermal 8YSZ nanopowders are attributed to their fine crystalline size and incompact aggregation.

Keywords: YSZ; Nanopowders; Hydrothermal Method; Sinterability

水热法制备 8YSZ 纳米粉体及其烧结活性的研究

范宝安*,颜家保,邱江华,颜晓潮

武汉科技大学,湖北省煤转化与新型炭材料重点实验室,武汉 Email: fanbaoan@yahoo.com.cn 收稿日期: 2011 年 3 月 22 日;修回日期: 2011 年 4 月 12 日;录用日期: 2011 年 4 月 13 日

摘 要:本文采用化学共沉淀结合水热晶化的方法,在 200°C 的温度下合成出了具有立方相的 8YSZ([ZrO₂]_{0.92}·[Y₂O₃]_{0.08})纳米粉体,粉体的晶粒尺寸在 7~8 nm 左右,粉体为软团聚,团聚体强度只有 20 MPa,粉体具有很高的烧结活性,1000°C 下就开始了快速收缩,1065°C 下收缩速率达到最快,1200°C 下收缩基本结束,块体材料 1000°C 下保温 8 h 或 1100°C 下保温 4 h 以后就基本上实现了致密化,相比 之下采用化学共沉淀结合水洗-醇洗-煅烧法需要在 1300°C 烧结 10 h 才能基本上实现致密化。水热晶化 法制备的 8YSZ 纳米粉体的高烧结活性来自于粉体细小的晶粒尺寸和松散的软团聚。

关键词:氧化钇稳定的氧化锆;纳米粉体;水热法;烧结活性

1. 引言

YSZ,氧化钇稳定的氧化锆(Yttria Stabilized Zirconia)英文缩写,其组成可表示为[ZrO₂]_{1-x}·[Y₂O₃]_x,其 中 *x* 的取值通常在 0.02~0.12 范围内,当 *x* < 0.08 时, YSZ 以四方相存在,当 *x* ≥ 0.08 时 YSZ 以立方相形式 存在^[1]。YSZ 是一种性能优异的氧离子导体,它 基金项目: 武汉科技大学青年科技骨干培育计划项目(2011x2013)。 具有良好的热稳定性、化学稳定性、力学性能和较高的电导率,且价廉易得,因此广泛用作电解质材料、 化学传感器和氧分离器等^[2]。由于立方相 YSZ 比四方 相 YSZ 具有更大的晶胞体积,使得氧离子更容易在其 中的迁移,因而电导率也更高。在立方相的 YSZ 中, 以 8YSZ([ZrO₂]_{0.92}·[Y₂O₃]_{0.08})具有最高的电导率^[3] (YSZ 中 Y₂O₃ 含量升高会导致氧空位与 Y_z, 点缺陷 缔合,从而限制氧空位的迁移能力)。但这种材料的缺点是烧结温度太高,通常在 1400°C 以上^[4,5],而烧结 往往是一道必不可少的工序,因而在 YSZ 烧结过程中 能耗极高(烧结能耗与烧结温度的 3~4 次方成正比)。 如果能够将烧结温度降至 1000°C 左右就可以大大降 低烧结过程中的能耗。

材料的纳米化是降低烧结温度的有效方法。纳米 材料由于颗粒尺寸小,使得大量的原子和离子暴露在 颗粒表面,这些表面原子和离子具有很高的比表面能。 在不平衡力场的作用下,小颗粒之间有相互靠近、结 合并长成大颗粒以降低其巨大比表面能的趋势。而烧 结过程的实质就是小晶粒相互结合、熔并,将晶粒间 气孔排除并长成大晶粒的过程。因此,如果将材料制 成纳米颗粒就可以显著降低其烧结温度。

YSZ 纳米材料的制备方法有很多,常见的有溶胶-凝胶法^[6]、喷雾热解法、燃烧分解法(Pechini法)^[7,8]、反向胶团法^[9-10]、醇-水溶液法^[11,12]、化学共沉淀法 ^[13,14]、共沸蒸馏法^[15,16]等等。这些方法均可制备出晶 粒尺寸几个纳米到几十个纳米不等的 YSZ 纳米材料。 这些方法的共同点是都需要对前躯体进行高温晶化处 理,而前躯体在高温晶化过程中,晶粒之间就有可能 通过表面原子、离子扩散、晶界迁移、表面化学键合 作用长成大颗粒或团聚体,使得 YSZ 纳米颗粒尺寸增 大或严重团聚,从而丧失了纳米特性,导致 YSZ 纳米 粉体的烧结温度依然比较高。

本文拟采取化学共沉淀结合水热晶化的方法,将 共沉淀得到的 ZrO(OH)₂ 和 Y(OH)₃ 前躯体不经过煅 烧,而是直接进行水热处理,在 200°C 的低温下,在 水溶液中直接结晶出 8YSZ 晶体,从而避免了晶粒长 大和硬团聚的出现。在烧结过程中,通过晶粒表面上 的-OH 的缩合作用使晶粒与晶粒之间以 Zr-O-Zr 键连 接起来,从而实现了 YSZ 的低温烧结。同时为了比较 水热晶化的处理效果,对共沉淀得到的 ZrO(OH)₂ 和 Y(OH)₃ 前躯体采用水洗-醇洗,然后煅烧晶化的方法 进行处理,比较了这两种不同的后处理方法对 8YSZ 晶粒尺寸、团聚体强度和粉体烧结性能的影响。

2. 实验部分

2.1. 8YSZ 纳米粉体的制备

按 8YSZ 的组成要求称取一定量的 ZrO(NO₃)₂ 和

Y(NO₃)₃溶于适量的水中,使得 ZrO²⁺离子浓度达到 0.1 mol/L; 加 1.0 wt.%的 PEG-400 和 0.5 wt.%的 PEG6000 作为表面活性剂,搅拌使其溶解。然后将混合溶液快速倒入过量 50%的浓氨水(浓度为 15 wt.%)中,浓 氨水中事先滴加少量的 NH₄PPA 作为分散剂。沉淀反应结束后,继续高速搅拌 0.5 h,然后静置陈化 10 h。沉淀陈化后,倾去上清液,直接放于水热釜中,200°C下水热,冷却后即得 8YSZ 纳米浆,将 8YSZ 浆过滤、水洗后,于 110°C 干燥 12 h 即得 8YSZ 纳米粉体。

对于醇洗-煅烧法制备 8YSZ 纳米粉体,原料以 ZrOCl₂ 代替 ZrO(NO₃)₂。沉淀陈化后水洗,直至用 3 mol/L AgNO₃ 溶液检测不出 CL为止,洗涤水中用浓氨 水调节 pH 值调整到 8~9,以防止在水洗过程中金属离 子因溶解而流失。同时洗涤水中加入少量的 PEG-400 和 PEG-6000(浓度与混合盐溶液中 PEG-400 和 PEG-6000的浓度相同),以防止水将沉淀物颗粒表面 上的表面活性剂分子冲走。然后先用 75%的医用乙醇 清洗 2 次,再用 95%的恒沸乙醇清洗 2 次,最后再用 无水乙醇清洗 2 次。接着于 80°C 干燥 8 h,再于 100°C 干燥 12 h。最后于 600°C 煅烧 2 h。

2.2. 8YSZ 纳米粉体的表征

粉体的相结构和组成由 XRD 表征(X'Pert MPD PRO, PANalytical, Holland), 扫描角度: 20°~90°; 扫描速度: 0.4°/s; Cu 靶, $K\alpha_1$ 衍射线。粉体对气体的吸附特性由氮气低温吸附仪来完成(Autosorb-1, QUANTACHROME, America)。晶粒的大小和形貌采用透射电镜(TEM, H-700, HITACHI, Japan)来观察。粉体的烧结活性采用热膨胀仪(L75-1550, LINSEIS, Germany)绘制的烧结曲线来测试,以5°C/min 从室温升至1300°C。粉体烧结体的密度由阿基米德排水法测定。粉体的生坯的压实体由粉末压片机(769YP-15A, 天津科器)和 ϕ 20 mm的模具压制而成,压实体的真密度采用容重法测量(质量/体积)。压实体的相对密度 = 真密度/理论密度(8YSZ 的理论密度 = 5.958 g/cm³)。

3. 实验结果与讨论

图 1 即为水热 8YSZ 粉体在 110°C 干燥后得到的 粉体的 XRD 衍射谱图,图中顶部的竖线图为 8YSZ

Figure 1. XRD pattern of the hydrothermal 8YSZ nanopowders 图 1. 水热 8YSZ 纳米粉体的 XRD 谱图

的标准谱图(PDF 卡片编号为 00-030-1468),从图中 可以发现所制备的产物的峰位置与 8YSZ 标准谱图的 峰位置非常一致,且没有其它杂峰,这表明产物为纯 立方相 8YSZ。其实际组成与目标组成是一致的,这 种一致性这是由水热法的工艺条件决定的,在水热法 制备 8YSZ 过程中,由于沉淀物不经过水洗、醇洗等 步骤,因此没有金属离子的流失,沉淀物全部按配料 比转化为目的产物。

另外根据 XRD 衍射峰的半峰宽利用 Scherrer 公式 可计算出晶粒尺寸^[17]。为了扣除仪器自身宽化度的影 响,采用 200 目的硅粉对仪器进行了标定,测得仪器 的宽化度为 2*θ* = 0.18°。表 1 即为根据 XRD 不同位置 处衍射峰的半峰宽计算得到的晶粒尺寸。

如果假定为晶粒为球形,根据表 1 中的数据可以 计算得到的晶粒尺寸为 7.86 ± 1.57 nm。纳米晶粒的尺 寸还可以通过对 N₂ 的饱和吸附量来计算,采用 BET 的方法测得水热 8YSZ 粉体的比表面积为 117.63 m²/g,根据公式 $D = 6/(\rho \cdot S)^{[17]}$ (式中 ρ 为晶体的理论

峰位置 (20/°)	晶面指数 (<i>h k l</i>)	半峰宽β (2θ/°)	修正半峰宽 β' (2θ/°)	晶粒尺寸 (nm)
30.073	111	1.32	1.14	7.2
34.665	200	1.44	1.26	6.6
50.243	220	1.44	1.26	7.0
59.563	321	1.08	0.9	10.2
62.625	222	1.2	1.02	9.1
73.468	400	1.2	1.02	9.7
81.437	331	1.92	1.74	6.0
84.335	420	1.68	1.5	7.1

Figure 2. TEM image of hydrothermal 8YSZ 图 2. 水热 8YSZ 透射电镜照片

密度,8YSZ的理论密度为5.958g/cm^{3[18]},S为粉体的 比表面积)可求得粉体的晶粒尺寸为8.58 nm。晶粒的 尺寸还可以由透射电镜(TEM)直接观察得到。图2即 为水热法合成的8YSZ纳米粉体超声分散以后的TEM 图片。从图2中可以看出水热合成的8YSZ晶粒呈球 形,晶粒相互间分散的很好,几乎没有观察到明显的 团聚现象,晶粒尺寸大致在10 nm 左右。

粉体的团聚程度可以由团聚体破碎强度来表征。 纳米粉体在压应力的作用下首先发生团聚体颗粒之间 的重排,因为团聚体之间的空隙比较大,接触点比较 少,团聚体颗粒之间容易发生相对滑动。当团聚体破 碎以后,再发生的是晶粒之间的重排,由于晶粒尺寸 比较小,晶粒之间接触面积大,所以晶粒之间发生相 对滑动的阻力比较大,这样在粉体相对密度-压力曲线 上就会出现转折,转折点处对应的压强就是团聚体破碎 时的压强,即团聚体的强度。图2即为水热晶化处理的 8YSZ 纳米粉体的相对密度-压强关系曲线。从图 3

Figure 3. The relative density of hydrothermal 8YSZ nanopowders as a function of the applied pressure 图 3. 水热 8YSZ 纳米粉体相对密度-压强关系曲线

9

可以看出,水热晶化法制备的 8YSZ 纳米粉体团聚体的团聚强度只有 20 MPa 左右。

图 4 是共沉淀后水洗-醇洗-煅烧法(600°C 煅烧 2 h)制备的 8YSZ 粉体的 XRD 谱图。图中(A)为水洗 时,去离子水中没有添加氨水;而图(B)为水洗时,去 离子水中用氨水调 pH 值 = 7~8。通过两图的对比可 以发现,图 A 中的各个衍射峰相对于图 B 普遍有些向 右偏移,从右上角 45°~65°局部放大的插图中可以更 清楚地看到这一点。通过 XRD 自动寻峰后发现,谱 图 A 最接近的组成为 $Y_{0.14}Zr_{0.86}O_{1.93}$ (四方相),而图 B 所代表的组成为 $Y_{0.15}Zr_{0.85}O_{1.93}$ (立方相)。组成的变 化可以归因为水洗过程中 Y 的流失,由于 Y^{3+} 沉淀出 来所需的 pH 值比较高(≥ 8),因此如果用呈中性的去 离子水冲洗沉淀必然会造成 Y^{3+} 的流失,导致产物的 相结构发生变化,因此在水洗过程中,在清洗水中用 氨水调 pH 值是必不可少的。

根据 Scherrer 公式利用半峰宽计算得到的晶粒尺 寸为 10.76 ± 1.41 nm (假定晶粒为球形)。采用 BET 法测得的粉体的比表面积为 78.4 m²/g,由此计算得到 的晶粒尺寸为 12.9 nm (BET 法计算出来的结果偏大 是由于晶粒之间由于相互搭接,造成部分表面被掩盖 起来,使得能够真正吸附气体的自由表面积减小)。由 此可见采用水洗-醇洗-煅烧法制备的 8YSZ 纳米粉体 的晶粒尺寸比水热法略大一些,这是由于在煅烧阶段 晶粒因部分烧结导致了晶粒粗化。图 5 是水洗-醇洗-煅烧法制备的 8YSZ 纳米粉体的 TEM 照片,从照片中 可以看出粉体团聚严重,晶粒彼此间不能被超声分散

Figure 4. XRD patterns of 8YSZ nanopowders prepared by washing ZrY(OH)_x precursor with de-ioned water, absolute ethanol and calcination 图 4. 水洗-醇洗-煅烧法制备的 8YSZ 纳米粉体 XRD 谱图

Figure 5. TEM image of 8YSZ prepared by washing ZrY(OH)_x precursor with de-ioned water, absolute ethanol and calcination 图 5. 水洗-醇洗-煅烧法制备的 8YSZ 透射电镜照片

开,而是形成了一种絮状堆积结构,晶粒尺寸大约在10~15 nm 左右。

图 6 是水洗-醇洗-煅烧法制备的 8YSZ 纳米粉体的生坯密度-压力曲线,从曲线上的拐点处可以看出团聚体的强度在 62 MPa 左右,大约是水热粉体团聚体强度的 3 倍。

图 7 是采用热膨胀仪测试得到的水热 8YSZ 压缩 体热收缩曲线(升温速度:5°C/min)。从图 7 中可以 看出水热 8YSZ 粉体从 1000°C 就开始快速收缩,最快 致密化温度在 1065°C,当温度升至 1200°C 后,收缩 已经基本停止(此时的收缩速率只有-0.00413%/°C), 这表明材料已经接近致密化。由此可见水热 8YSZ 在 1000~1100°C 左右就可以实现致密化。图 8 是水热 8YSZ 块体材料分别于 1000 和 1100°C 下烧结测得的

Figure 6. The relative density of 8YSZ nanopowders prepared by washing ZrY(OH)_x precursor with de-ioned water, absolute ethanol and calcination, as a function of the applied pressure 图 6. 水洗-醇洗-煅烧法制备的 8YSZ 纳米粉体相对 密度-压强关系曲线

Figure 7. Thermal shrinkage curve of hydrothermal 8YSZ 图 7. 水热 8YSZ 压缩体热收缩曲线

Figure 9. Thermal shrinkage curve of 8YSZ compressor, materials from washing ZrY(OH)_x precursor with de-ioned water, absolute ethanol and calcination 图 9. 水洗-醇洗-煅烧 8YSZ 压缩体热收缩曲线

相对密度随时间的变化曲线。从图 8 可以看出水热 8YSZ在1000°C下保温8h或1100°C下保温4h以后, 相对致密度均已超过了95%(对于陶瓷材料的烧结而

言,一般相对密度 >95%即可认为基本致密化)。

图 9 是水洗-醇洗-煅烧法制备的 8YSZ 粉体烧结 曲线。从图中可以看出水洗-醇洗-煅烧法制备的 8YSZ 粉体在 1050°C 开始快速收缩,在 1130°C 时收缩速率 达到最大,此后收缩速率虽然逐渐减慢,但一直持续 进行,到 1300°C 时收缩速率仍有-0.01%/°C。

图 10 是水洗-醇洗-煅烧法制备的 8YSZ 块体烧结的相对密度-烧结时间曲线,从曲线中可以看出在1100°C 下烧结 8 h,块体的相对密度才接近 90%,而 要想获得 95%的相对密度需要在 1300°C 下烧结 10 h。 如果按照能耗与烧结温度的 3 次方成正比计算,要达 到 95%的相对致密度,水热晶化法制备的 8YSZ 烧结 所需的能耗只有水洗-醇洗-煅烧法制备的 8YSZ 的 1/4。由此可见水热处理得到的 YSZ 烧结过程中节能 效果非常显著。

水热晶化法制备的 YSZ 良好的烧结活性得益于 YSZ 前躯体低温晶化处理和液相环境。200°C 的晶化 温度避免了高温煅烧引起的晶粒粗化和硬团聚的出 现。晶粒尺寸小,烧结驱动力大,烧结起始温度低; 团聚程度低,在粉体干燥过程中,在毛细管力的作用 下,团聚体容易破碎,粉体颗粒间隙小,烧结结束温 度也相应降低。另一方面,在液相环境中得到的 8YSZ 粉体表明富含大量的活性-OH,这些活性-OH 很容易 通过相互间的缩合作用将两个相邻的晶粒以 Zr-O-Zr 键连接在一起,从而缩小两个晶粒之间的距离,使得 烧结温度进一步降低。

4. 结论

1) 采用化学共沉淀结合水热晶化的方法可以制 备出晶粒尺寸只有 7~8 nm,团聚体团聚强度只有 20 MPa 的 8YSZ 纳米粉体,并且水热晶化法制备 8YSZ 纳米粉体无需水洗、醇洗、干燥、煅烧等工序、工艺 路线简单、能耗低,适宜大批量工业化生产。

2) 水热法制备的 8YSZ 粉体具有良好的烧结活 性,1000°C 下就开始快速烧结,最快致密化温度在 1065°C 左右,烧结结束时的温度为 1200°C;相比之 下,采用水洗-醇洗-煅烧法制备的 8YSZ 粉体烧结起 始温度为 1050°C,最快致密化温度为 1130°C,但升 温至 1300°C 后仍有一定的收缩速率。这表明粉体的 致密化过程尚未完成,其原因是水洗-醇洗-煅烧法制 备的 8YSZ 由于经历了高温煅烧,纳米粉体发生了粗 化并产生硬团聚,粉体粗化导致烧结起始温度和最快 致密化温度升高、硬团聚的出现导致了粉体内部出现 了大尺寸的气孔,使得烧结结束的温度显著升高。

3) 水热法制备的 8YSZ 块体材料在 1000°C 下保 温 8h或 1100°C 下保温 4h以后就基本上实现了致密 化(>95%),而采用水洗-醇洗-煅烧法制备的 8YSZ 需 要在 1300°C 下烧结 10 h才能基本实现致密化,由此 可以估算出水热法制备的 8YSZ 烧结能耗只有水洗-醇洗-煅烧法的 1/4。

5. 致谢

本文的创作感谢武汉科技大学提供的经费支持及 来自中国科学院过程工程研究所朱庆山研究员的倾心 指导。

参考文献 (References)

 M. Gaudon, C. Laberty-Robert, F. Ansart, et al., New chemical process for the preparation of fine powders and thin films of LSMx-YSZ composite oxides. Solid State Sciences, 2003, 5(10): 1377-1383.

- [2] 范宝安,朱庆山,谢朝晖.固体氧化物燃料电池 YSZ 电解质的制备方法概述[J].过程工程学报,2004,4(1):75-83.
- [3] S. P. S. Badwal. Zirconia-based solid electrolytes: microstructure, stability and ionic conductivity. Solid State Ionics, 1992, 52(1-3): 23-32.
- [4] M. F. Han, X. L. Tang, S. P. Peng. Research on sintering process of YSZ electrolyte. Rare Metals, 2006, 25(6): 209-212.
- [5] R. S. Lima, B. R. Marple. Nanostructured YSZ thermal barrier coatings engineered to counteract sintering effects. Materials Science and Engineering: A, 2008, 485(1-2): 182-193.
- [6] 章天金, 吴新明. 溶胶-凝胶工艺合成 ZrO₂ 超微粉末的研究 [J]. 无机材料学报, 1996, 11(3): 435-440.
- [7] A. I. Y. Tok, F. Y. C. Boey, S. W. Du, et al. Flame spray synthesis of ZrO₂ nano-particles using liquid precursors. Materials Science and Engineering B, 2006, 130(1-3): 114-119.
- [8] M. Gaudon, E. Djurado, N. H. Menzler. Morphology and sintering behaviour of yttria stabilised zirconia (8-YSZ) powders synthesised by spray pyrolysis. Ceramics International 2004, 30(8): 2295-2303.
- [9] C. Laberty-Robert, F. Ansart, C. Deloget, et al. Powder synthesis of nanocrystalline ZrO₂-8%Y₂O₃ via a polymerization route. Materials Research Bulletin, 2001, 36(12): 2083-2101.
- [10] R. E. Juárez, D. G. Lamas, G. E. Lascalea, et al. Synthesis of nanocrystalline zirconia powders for TZP ceramics by a nitrate-citrate combustion route. Journal of the European Ceramic Society, 2000, 20(2): 133-138.
- [11] 李蔚, 高濂, 郭景坤. 醇-水溶液加热法制备纳米 ZrO₂粉体及 相关过程的研究[J]. 无机材料学报, 2000, 15(1):16-20.
- [12] 李蔚, 高濂, 郭景坤. 醇-水溶液加热法制备纳米氧化锆粉体
 [J]. 无机材料学报, 1999, 14(1): 161-164.
- [13] 施剑林,高建华,林祖禳.共沉淀-喷雾干燥法制备 YSZ 粉料 及其对烧结密度的影响[J]. 硅酸盐学报, 1989, 17(5):417-422.
- [14] T. Hu, Z. C. Michael. Nanocrystallization and phase transformation in monodispersed ultrafine zirconia particles from various homogeneous precipitation methods. Journal of the American Ceramic Society, 1999, 82(9): 2313-2320.
- [15] H. Shari, Z. Zhang. Preparation of Nanometre-Sized ZrO₂/Al₂O₃ Powders by Heterogeneous Azeotropic Distillation. Journal of the European Ceramic Society, 1997, 17(5): 713-717.
- [16] S. K. Tadokoro, E. N. S. Muccillo. Physical characteristics and sintering behavior of ultrafine zirconia-ceria powders. Journal of the European Ceramic Society, 2002, 22(9-10): 1723-1728.
- [17] R. E. uárez, D. G. Lamas, G. E. Lascalea, et al. Synthesis of nanocrystalline zirconia powders for TZP ceramics by a nitrate-citrate combustion route. Journal of the European Ceramic Society, 2000, 20(2):133-138.
- [18] I. R. Gibson, G. P. Dransfield, J. T. S. Irvine. Sinterability of commercial 8 mol% yttria-stabilized zirconia powders and the effect of sintered density on the ionic conductivity. Journal of Materials Science, 1998, 33(17): 4297-4305.