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Abstract

The Brayton-cycle gas-cooled reactor using helium-xenon (He-Xe) mixture as coolant is considered
one of the most promising technologies for megawatt-class space power systems. However, few stud-
ies have investigated the influence of wire wraps on the flow and heat transfer characteristics of He-
Xe mixtures, and the underlying mechanisms remain unclear. In this work, numerical simulations are
performed to study the flow and heat transfer behavior of He-Xe mixture in an annular channel with
wire wraps. Four different wrap cross-sectional shapes are examined over a range of Reynolds num-
bers. Key parameters including temperature distribution, Nusselt number, friction factor, and ther-
mal-hydraulic performance ratio (PEC) are analyzed to evaluate the overall heat transfer enhance-
ment. A comparative analysis between wrapped and bare channels is conducted to assess the compre-
hensive thermal performance difference introduced by the wire wraps. Results indicate that the trap-
ezoidal wrap enhances heat transfer in the annular channel, whereas the circular, square, and in-
verted-trapezoidal wraps worsen heat transfer. Under the PEC criterion, the trapezoidal wrap exhib-
its superior performance at high Reynolds numbers. The findings provide valuable references for the
core design and optimization of He-Xe cooled space reactors.
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FERRIRBEIRRSRES, FIRARG T EREMKIIR I GEIR ARG REE e HED. S5
% 107 () A2 SR HE RE VR 2R SR (SNRPS) 2 ZE FHU R B A BSR4, R AKIR TR R AT B ML, 7Eix
JUHER, P2 E SR 1M SR [1-[5], GIAnAEHE, WSS mHEM A HE. £ LIREAR PR
Yo HEGS & P AT TR R G002 SEELR FL G A HE R v AT IO T SRz — o Herh LRURR & R 7% 21771
SR HEZ B R AT TN U I R

RN eI AU, HAE B TR A LT 2503, AT R R L3 A% #4 . El-Genk Al Tournier
[6] [T NI TR, He-Xe R & UARIE S It —JniR &M U h At e i tE, HARLREHEHIAL
RENNRAW LRGN, BE/RBTE A 40g/mol ¥ He-Xe R A UM RIE. H AN He-Xe AL VR
WEFRE IR R, =M, WA T IEIESE R LA M RIRT I, A RO TR B4 gt A2 408 R X He-Xe
IR TG R R 2 . % He-Xe IIAE B TO, ) MOS0 e 4 LK s Ak e B 1 F 7088 U R e
FERMA I3 X He-Xe SRR HES AT THEIT. Vitovsky [8]558 NN J9HE = ffy JBIHE 5 HE LR R A
FHEFEIEA L, R el B 1 RURIR U S A0 A 1 T B A = AT A A RS I B e A
R, EE AR RV UAE R I8 TS A A Hh A A R B K PR 2 S A R B K5 2 . Ning [9]
(10X - R & SUAAE = A T HE S e oG N SR AL IR AT T BB AT AL, WF A R, =
FIEHPIRI ST, e R TIR BEAAAE S 1 A 501 . Wang [1TIXIANFRIZ IS H 2 x 2 RS2 R
WIE T He-Xe WG TRIIRANE AT HUER 5T, S5 RKW SR ML A%, Wang AFLR R
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FREFE NI TR, X He-Xe HECR B AREHE W SUIEAIEFE 53, X He-Xe HETSGRAL I
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Figure 1. Geometric models of the wire-wrapped annular channels
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Table 1. Geometric parameters of wire wraps with different shapes
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Figure 2. Mesh division of annular channel
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TEXF RS TGRSR o X S 2H IR JEAT I A BB 2 M B0AIE , XA 203 1618 73, 2586 15,
3618 Ji, 10362 /i, VLK 17977 Jio A3 T AR MRS T B G642 % il P 200 & SR i) R
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Table 2. Number and numbering of meshing

2. MISHEREFS

M ¥& G mesh 1 mesh 2 mesh 3 mesh 4 mesh 5
X B 1618 Ji 2586 11 3618 /i 10362 J3 17977 73

24. BUERERIE

X F 40g/mol (MK, Zhou [181LAK Qin [17]4524% %+ RANS {4} Taylor [BEF 25474542
BOAE, MISIESS R AR W, SST k- T i 5 2 (R0 25 S 5 S50 48 AT 34« Li[16], Xie [19]#1 Ning [10]
S NAEEE 7 V380U PN, T Vitovsky [817HE =M1 SLIG, AUl 45 B 2R Transition SST, BSL-RSM 7EA
1B AR5 206 45 45 4F,  SST k-, Transition SST, BSL-RSM FEAU7E 75 43 4 Jié B AR AU &5 SR 1) 5 52
WA R AR 25 bRk, I STk A S S5 B 5 M 5 AR S AN —8, i SST k-o 7EIRE
S 5 = A SR AU, R, AR AR SO A A AR TR AT A 1 SST kew Ty, A
J% Tournier ¥ T77% . N 1 B iEia i A 284 LA vt S5 VR i 4, 0T LG 1 Taylor [207] 1 P8 4H IR 5 S5
£ Taylor [ S5, [ AL D N 5.87 mm, [EERIIABCN 60D, BEJEY 0.28 mm. J7iZieikEHRH
(RSB T LI 2% 3 iz . £E Taylor [ISEE A, 40 g/mol IR GUR & SAEA R Lol i e e, i 4.
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Figure 3. Grid independence verification
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Figure 4. Experimental section of Taylor’s tube
4. Taylor [RIEF LI EL
Table 3. Taylor experimental condition parameters
2 3. Taylor LW TRESH
LFFAF Run697 24 Run701 23
PNER=ER7 27,858 46,948
AR K 297.8 297.0
71 MPa 0.529 0.804
BETH AR5 W/m? 101,343 157,949
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Figure 5. Comparison between computational results and experimental data: (a) Run697, (b) Run701
B 5. HEERSSEHEIREAIRTEL: (2) Run697, (b) Run701

3. GRE5iHR

LA P RATREN DTSR L, R, SR RIS, TS
RO B . SR E T 14 AN Re MUE T, TR (52 AT I B A TR L 1A A 32 7
el PRIE TARRIN CHRIE . FREI R LN . BRI S T O T4 4.

Table 4. Boundary conditions settings

T4 BWARFHRE

No. Ti/K Win/x103kg's™! O/W Pouw/MPa
1 300 1.79 280 0.113
2 400 6.26 650 0.530
3 500 8.26 510 0.113
4 500 17.6 880 0.530
5 300 1.688 265 0.530
6 300 422 660 0.530
7 300 8.44 1320 0.530
8 300 12.66 1980 0.530
9 300 16.88 2640 0.530
10 300 21.1 3300 0.530
11 300 25.32 3960 0.530
12 300 29.54 4620 0.530
13 300 33.76 5280 0.530
14 300 37.98 5940 0.530
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Figure 6. Temperature distribution diagrams at different axial sections and secondary flow velocity distribution cloud diagrams (vector
diagrams)
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Figure 7. Local Nusselt number: (a)~(d) correspond respectively to boundary conditions 1, 2, 3, and 4
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Figure 8. The average Nusselt number of different wire-wrapped annular channels
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Figure 9. The average friction coefficient of different wire-wrapped annular channels
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Figure 10. The variation of Performance Evaluation Criteria of different wire-wrapped annular channels with Reynolds number
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