环境污染对非线性偏害共生系统影响的 动力学分析

何珊珊,安 霞,王福昌

防灾科技学院, 北京

Email: shanshanhe2007@163.com

收稿日期: 2021年2月19日: 录用日期: 2021年3月22日: 发布日期: 2021年3月29日

摘 要

生态环境的严重污染已经威胁到了物种的生存,由此引起的灾害问题现已成为环境灾害中不可忽视的灾种之一。本文建立了一个非线性偏害共生模型,利用动力学分析方法得到污染率临界值m*的表达式,借助Dulac判别法证明了m<m*时,正平衡点是全局渐近稳定的,探讨了生态意义:污染率与抑制作用密切相关:一定条件下,环境污染对第二种群的最终数量会带来严重影响。

关键词

环境污染,偏害共生系统,Dulac判别法,全局稳定,极限环

Dynamic Analysis of the Influence of Environmental Pollution on a Nonlinear Amensalism System

Shanshan He, Xia An, Fuchang Wang

Institute of Disaster Prevention, Beijing Email: shanshanhe2007@163.com

Received: Feb. 19th, 2021; accepted: Mar. 22nd, 2021; published: Mar. 29th, 2021

Abstract

Serious pollution of the ecological environment has threatened the survival of species. And environmental pollution has become one of the disasters that cannot be ignored. The expressions of

文章引用: 何珊珊, 安霞, 王福昌. 环境污染对非线性偏害共生系统影响的动力学分析[J]. 自然科学, 2021, 9(2): 256-264. DOI: 10.12677/ojns.2021.92028

threshold of pollution rate m^* is obtained basic knowledge of dynamical system. Moreover, it is proved that when $m < m^*$ with the help of the Dulac method, the positive equilibrium is globally asymptotically stable. The ecological significance is discussed: the pollution rate is closely related to the inhibition coefficient, environmental pollution can have a serious impact on the final population of the second population.

Keywords

Environmental Pollution, Amensalism System, Dulac Discriminant, Global Stability, Limit Cycle

Copyright © 2021 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Open Access

1. 引言

人类社会现代工农业的飞速发展和其他生产活动所造成的环境污染,尤其是生态环境的严重污染,已经威胁到了物种的生存,主要体现在生物遗传多样性丧失,物种多样性丧失,最终导致生境单一化[1]。目前环境污染灾害也已成为环境灾害中不可忽视的灾种之一,它既不像洪水和地震那样显而易见,然而,它却像癌细胞那样不声不响地缓慢地侵蚀着人们的生存基础[2]。如某些污染事故泄漏的有毒气体和液体,当时表现并不强烈,而在几年甚至几十年后才发现是由某次污染事故引起种群 DNA 复制损伤、染色体畸变或免疫功能失调等造成的,如日本的水误病事件[2]等。

因此,有关这一方面的生物数学模型的建立和发展屡见不鲜,偏害共生系统是对一方有害而对另一方无利弊影响的共生模型,这种关系很常见[3],文献[4] [5]研究了 B-D 功能反应的两种群偏害模型,文献[6]研究了鱼群偏害共生动力学线性模型,但都少有关于环境污染偏害共生系统的研究。本文我们研究环境污染对非线性偏害共生系统影响的动力学分析,研究环境污染对种群生存的影响,对得出的结论给出生态意义,该结果对于保护物种生存和治理环境提供了可靠的科学依据。

2. 模型建立

$$\begin{cases}
\frac{dN_1}{dt} = r_1 N_1 \left(1 - \left(\frac{N_1}{P_1} \right)^{\alpha_1} - u \left(\frac{N_2}{P_1} \right)^{\alpha_2} \right) \\
\frac{dN_2}{dt} = r_2 N_2 \left(1 - \left(\frac{N_2}{P_2} \right)^{\alpha_3} \right)
\end{cases}$$
(1.1)

系统(1.1)是 Gilpin–Ayala 模型[7] [8]的推广,Xiong 在 $\alpha_1 = \alpha_2 = \alpha_3 = 1$ 研究了鱼群偏害共生动力学的 Lotka-Volterra 模型[9],给出了稳定性分析。其中 $N_1 \geq 0, N_2 \geq 0$,其它参数都为正数,项 $\frac{N_1}{P_1}, \frac{N_2}{P_1}$ 分别表示第一二种群的已经利用空间, $1 - \frac{N_1}{P_1}, 1 - \frac{N_2}{P_1}$ 表示两种群未利用的空间,u 代表第二种群对第一种群的抑制系数。文献[9]在 $\alpha_1 > 0, \alpha_2 > 0, \alpha_3 \geq 1$ 推广了该系统,本文在文献[9]的基础上,考虑到环境污染对偏害共生系统的影响,在两个种群引入为环境污染率 m,对系统(1.1)进行改进得到

$$\begin{cases}
\frac{dN_{1}}{dt} = r_{1}N_{1} \left(1 - \left(\frac{N_{1}}{P_{1}} \right)^{\alpha_{1}} - u \left(\frac{N_{2}}{P_{1}} \right)^{\alpha_{2}} \right) - mN_{1} = P(N_{1}, N_{2}) \\
\frac{dN_{2}}{dt} = r_{2}N_{2} \left(1 - \left(\frac{N_{2}}{P_{2}} \right)^{\alpha_{3}} \right) - mN_{2} = Q(N_{2})
\end{cases}$$
(1.2)

3. 平衡点的存在性

结合实际,污染率不超过两种群内禀出生率的生态意义[1],即在 $m < \min\{r_1, r_2\}$ 条件下对系统(1.2)进行动力学分析。我们很容易得到系统(1.2)存在三个边界平衡点和一个正平衡点

$$E_1(0,0), E_2\left(P_1\left(1-\frac{m}{r_1}\right)^{\frac{1}{\alpha_1}},0\right), E_3\left(0,N_2^*\right), E_4\left(N_1^*,N_2^*\right)$$

这里, 正平衡点的存在条件是 $u\left(\frac{N_2^*}{P_1}\right)^{\alpha_2} + \frac{m}{r_1} < 1$ 。其中 $N_1^* = P_1 \left(1 - \frac{m}{r_1} - u\left(\frac{N_2^*}{P_1}\right)^{\alpha_2}\right)^{\frac{1}{\alpha_1}}$, $N_2^* = P_2 \left(1 - \frac{m}{r_2}\right)^{\frac{1}{\alpha_3}}$ 。

需要指出,Wu 在文献[9]研究了m=0非线性的偏害共生动力学模型,给出了四个平衡点,

$$A_1(0,0), A_2(P_1,0), A_3(0,\widetilde{N_2^*}), A_4(\widetilde{N_1^*},\widetilde{N_2^*}),$$
其中

$$\widetilde{N_1^*} = P_1 \left(1 - u \left(\frac{P_2}{P_1} \right)^{\alpha_2} \right)^{\frac{1}{\alpha_1}}, \ \widetilde{N_2^*} = P_2$$

接下来我们对系统(1.1)(1.2)的正平衡点进行比较,令

$$T(m) = (N_1^*)^{\alpha_1} - (\widetilde{N_1^*})^{\alpha_1}$$

$$= P_1^{\alpha_1} \left(u \left(\frac{M_2^*}{P_1} \right)^{\alpha_2} - \left(\frac{N_2^*}{P_1} \right)^{\alpha_2} \right) - \frac{m}{r_1}$$

$$= P_1^{\alpha_1} \left(u \left(\frac{P_2}{P_1} \right)^{\alpha_2} \left(1 - \left(1 - \frac{m}{r_2} \right)^{\frac{\alpha_2}{\alpha_3}} \right) - \frac{m}{r_1} \right)$$
(2.1)

再对T(m)求两次导,得到

$$T'(m) = P_1^{\alpha_1} \left(\omega \left(1 - \frac{m}{r_2} \right)^{\frac{\alpha_2}{\alpha_3} - 1} - \rho \right)$$

$$T''(m) = P_1^{\alpha_1} \left(1 - \frac{\alpha_2}{\alpha_3} \right) \frac{\omega}{r_2} \left(1 - \frac{m}{r_2} \right)^{\frac{\alpha_2}{\alpha_3} - 2}$$

$$(2.2)$$

其中 $\omega = \frac{u\alpha_2}{r_2\alpha_3} \left(\frac{P_2}{P_1}\right)^{\alpha_2}$, $\rho = \frac{1}{r_1}$ 。由此,给出关于系统(1.1)和(1.2)正平衡点比较的一个充分性定理。

定理 2.1: (1)
$$N_2^* < \widetilde{N_2^*}$$
; (2)若 $r_1 = r_2 = r$, $\alpha_2 < \alpha_3$, $\frac{\rho}{\omega} < 1 \perp u > \left(\frac{P_1}{P_2}\right)^{\alpha_2}$, 有 $N_1^* > \widetilde{N_1^*}$ 。

证明: (1) 由于 $\widetilde{N_2^*} = P_2$, $N_2^* = \left(1 - \frac{m}{r_2}\right)^{\frac{1}{\alpha_3}} P_2$ 显然得证。

(2) 令

$$m_0 = \left(1 - \left(\frac{\rho}{\omega}\right)^{1 - \frac{\alpha_2}{\alpha_3}}\right) r_2 \tag{2.3}$$

显然, 当 $\alpha_2 < \alpha_3$, $\frac{\rho}{\omega} < 1$ 时, 可以得到 $m_0 < r_2 = r_1$, 将(2.3)代入(2.2)得到

$$T'(m_0) = 0$$
, $T''(m_0) > 0$, (2.4)

因此T(m)在 $(0,m_0)$, (m_0,r) 先减后增,又因为T(0)=0,可以得到

$$T\left(m_0\right) < 0 \tag{2.5}$$

再由条件 $u > \left(\frac{P_1}{P_2}\right)^{\alpha_2}$ 得到

$$\lim_{m \to r^{-}} T(m) = P_1^{\alpha_1} \left(u \left(\frac{P_2}{P_1} \right)^{\alpha_2} - 1 \right) > 0$$
(2.6)

由(2.5),(2.6)可以得到T(m)在 (m_0,r) 有唯一正根 ξ ,且当 $m>\xi$ 时,满足

$$T(m) > 0 \tag{2.7}$$

考虑单调增函数 $y=x^{\alpha_2}\left(\alpha_2\geq 1\right)$,结合(1.3)和(1.9),对于 $\forall m\in \left(\xi,r\right)$,有 $N_1^*>\widetilde{N_1^*}$,这样定理 2.1 得证。

4. 平衡点的局部稳定性

系统(1.2)雅可比矩阵为

$$J = \begin{bmatrix} J_{11} & -\frac{r_1 u N_1 \alpha_2 N_2^{\alpha_2 - 1}}{P_1^{\alpha_2}} \\ 0 & J_{22} \end{bmatrix}$$
(3.1)

$$J_{11} = r_1 \left(1 - \left(\frac{N_1}{P_1} \right)^{\alpha_1} - u \left(\frac{N_2}{P_1} \right)^{\alpha_2} - \frac{m}{r_1} \right) - r_1 \alpha_1 \left(\frac{N_1}{P_1} \right)^{\alpha_1}$$
(3.2)

$$J_{22} = r_2 \left(1 - \left(\frac{N_2}{P_2} \right)^{\alpha_2} - \frac{m}{r_2} \right) - r_2 \alpha_3 \left(\frac{N_2}{P_2} \right)^{\alpha_3}$$
 (3.3)

定理 3.1: 假设 $\alpha_2 \ge 1$ 时, $m < \min\{r_1, r_2\}$ 则有

(1) $E_1(0,0)$ 是不稳定的;

(2)
$$E_2\left[\left(1-\frac{m}{r_1}\right)^{\frac{1}{\alpha_1}},0\right]$$
是鞍点;

(3)
$$E_3(0, N_2^*)$$
, 当 $m < r_1 \left(1 - u \left(\frac{N_2^*}{P_1}\right)^{\alpha_2}\right)$ 是鞍点; 当 $m > r_1 \left(1 - u \left(\frac{N_2^*}{P_1}\right)^{\alpha_2}\right)$ 是稳定点;

(4)
$$E_4(N_1^*, N_2^*)$$
 当 $m < r_1 \left(1 - u \left(\frac{N_2^*}{P_1}\right)^{\alpha_2}\right)$ 是稳定点, $m > r_1 \left(1 - u \left(\frac{N_2^*}{P_1}\right)^{\alpha_2}\right)$ 是鞍点。

证明: (1) 由(3.1)知系统(1.2)在 E, 处的雅可比矩阵为

$$J(E_1) = \begin{bmatrix} r_1 - m & 0 \\ 0 & r_2 - m \end{bmatrix}$$
(3.4)

此时两个特征值分别是 $\lambda_1 = r_1 - m > 0, \lambda_2 = r_2 - m > 0$, 可知 E_1 是不稳定点。

(2) 系统(1.2)在 E_2 处的雅可比矩阵为 $J(E_2) = \begin{bmatrix} -\alpha_1(r_1 - m) & 0 \\ 0 & r_2 - m \end{bmatrix}$, 此时两个特征值分别是 $\lambda_1 = -\alpha_1(r_1 - m) < 0, \lambda_2 = r_2 - m > 0$,可知 E_2 是鞍点。

(3) 系统(1.2)在
$$E_3$$
 处的雅可比矩阵为 $J(E_3) = \begin{bmatrix} r_1 \left(1 - u \left(\frac{N_2^*}{P_1}\right)^{\alpha_2} - \frac{m}{r_1}\right) & 0 \\ 0 & -\alpha_3 \left(r_2 - m\right) \end{bmatrix}$, 此时两个特征值分别是 $\lambda_1 = r_1 \left(1 - u \left(\frac{N_2^*}{P_1}\right)^{\alpha_2} - \frac{m}{r_1}\right)$, $\lambda_2 = -\alpha_3 \left(r_2 - m\right) < 0$,显然,当 $m < r_1 \left(1 - u \left(\frac{N_2^*}{P_1}\right)^{\alpha_2}\right)$ 时, $\lambda_1 > 0$,则 E_3 是鞍点;当 $m > r_1 \left(1 - u \left(\frac{N_2^*}{P_1}\right)^{\alpha_2}\right)$ 时, $\lambda_1 < 0$,则 E_3 是稳定点。

(4) 系统((1.2))在
$$E_4$$
处的雅可比矩阵为 $J(E_4) = \begin{bmatrix} -r_1\alpha_1 \left(\frac{N_1^*}{P_1}\right)^{\alpha_1} & -\frac{r_1uN_1^*\alpha_2\left(N_2^*\right)^{\alpha_2-1}}{P_1^{\alpha_2}} \\ 0 & -r_2\alpha_3 \left(\frac{N_2^*}{P_2}\right)^{\alpha_1} \end{bmatrix}$,此时两个特征值

分别是
$$\lambda_1=-r_1\alpha_1\bigg(\frac{N_1^*}{P_1}\bigg)^{\alpha_1}<0, \lambda_2=-r_2\alpha_3\bigg(\frac{N_2^*}{P_2}\bigg)^{\alpha_1}<0$$
,显然, E_4 是稳定点。

5. 平衡点的全局稳定性

接下来要证明边界平衡点和正平衡点的稳定性,采用的方法是 Wu [9], Chen L. S. [10]和 Chen F. D. [11]的基本方法。

定理 4.1: (1)
$$m > r_1 \left(1 - u \left(\frac{N_2^*}{P_1}\right)^{\alpha_2}\right)$$
, $E_3 \left(0, N_2^*\right)$ 是全局渐近稳定的;

(2)
$$m < r_1 \left(1 - u \left(\frac{N_2^*}{P_1}\right)^{\alpha_2}\right)$$
, E_4 是全局渐近稳定的。

在证明此定理之前,先看一个引理。

引理 4.1: 考虑单种群系统

$$\frac{\mathrm{d}N_2}{\mathrm{d}t} = r_2 N_2 \left(1 - \left(\frac{N_2}{P_2} \right)^{\alpha_3} \right) - mN_2 = N_2 F \left(N_2 \right) \tag{4.1}$$

当 $r_2 - m > 0$ 时,系统(4.1)的唯一正平衡点 $N_2^* = P_2 \left(1 - \frac{m}{r_2}\right)^{\frac{1}{\alpha_3}}$ 是全局稳定的。

证明: (1) 显然

$$F(0) = r_2 - m > 0$$

$$F(+\infty) = -\infty$$
(4.2)

另外, 当 $N_2 \ge 0$ 时, 由(4.1)可以得到

$$\frac{\mathrm{d}F(N_2)}{\mathrm{d}N_2} = -\frac{r_2\alpha_3N_2^{\alpha_3-1}}{P_2^{\alpha_3}} - m < 0 \tag{4.3}$$

由(4.2),(4.3)得到(4.1)在 $(0,+\infty)$ 单调递减,则 $N_2^* = P_2 \left(1 - \frac{m}{r_2}\right)^{\frac{1}{\alpha_3}}$ 是唯一零点。

这样,我们就能够得到

$$N_2^* > N_2 > 0, F(N_2) > 0$$

 $0 < N_2^* < N_2, F(N_2) < 0$ (4.4)

则由(4.4)根据文献[10]引理 2.1,系统(4.1)的唯一正平衡点 N_2^* 是全局稳定的。下面证明定理 4.1(1)。

假设 $(N_1(t), N_2(t))$ 是系统(1.2)的解,那么根据引理 3.1 可以得到

$$\lim_{t \to +\infty} N_2(t) = N_2^* \tag{4.5}$$

则对于充分小的 $\varepsilon > 0$,不失一般性,可以设 $\varepsilon < \frac{1}{2}N_2^*$,存在 $T_1 > 0$,有

$$N_2(t) \ge N_2^* - \varepsilon \tag{4.6}$$

另外,我们考虑单调增函数 $y = x^{\alpha_2} (\alpha_2 \ge 1)$ 当 x > 0 时,有

$$\left(\frac{N_2(t)}{P_1}\right)^{\alpha_2} \ge \left(\frac{P_2 - \varepsilon}{P_1}\right)^{\alpha_2} \tag{4.7}$$

另外,根据 $m > r_1 \left(1 - u \left(\frac{N_2^*}{P_1} \right)^{\alpha_2} \right)$,即 $1 - u \left(\frac{N_2^*}{P_1} \right)^{\alpha_2} - \frac{m}{r_1} < 0$,则对于充分小的 $\varepsilon > 0$,得到:

$$r_{1} \left(1 - u \left(\frac{N_{2}^{*} - \varepsilon}{P_{1}} \right)^{\alpha_{2}} \right) - m < 0$$

$$\tag{4.8}$$

这样,系统(1.2)的第一个方程和(4.7)的右半部分不等式,当 $t \ge T$,时,有

$$\frac{\mathrm{d}N_{1}}{\mathrm{d}t} \leq r_{1}N_{1} \left(1 - \left(\frac{N_{1}}{P_{1}} \right)^{\alpha_{1}} - u \left(\frac{N_{2}^{*} - \varepsilon}{P_{1}} \right)^{\alpha_{2}} \right) - mN_{1}$$

$$\leq r_{1}N_{1} \left(1 - u \left(\frac{N_{2}^{*} - \varepsilon}{P_{1}} \right)^{\alpha_{2}} \right) - mN_{1}$$
(4.9)

因此,由(4.8)可以得到

$$N_1(t) \le N_1(T_1) \exp\left\{ \left(r_1 \left(1 - u \left(\frac{N_2^* - \varepsilon}{P_1} \right)^{\alpha_2} \right) - m \right) (t - T_1) \right\} \to 0 \tag{4.10}$$

即

$$\lim_{t \to +\infty} N_1(t) = 0 , \tag{4.11}$$

由微分方程稳定理论[3]定理 4.1(1)得证。

下面给出 4.1(2)证明。根据 $m < r_1 \left(1 - u \left(\frac{N_2^*}{P_1}\right)^{\alpha_2}\right)$,即 $1 - u \left(\frac{N_2^*}{P_1}\right)^{\alpha_2} - \frac{m}{r_1} > 0$,则对于充分小的 $\varepsilon > 0$,得

到:

$$r_{1} \left(1 - u \left(\frac{N_{2}^{*} + \varepsilon}{P_{1}} \right)^{\alpha_{2}} \right) - m > 0$$

$$(4.12)$$

根据(4.5)得到对于充分小的 $\varepsilon > 0$, 当 $t \ge T$, 时, 有

$$N_2^* - \varepsilon < N_2(t) < N_2^* + \varepsilon \tag{4.13}$$

对于充分小的 $\varepsilon > 0$,根据(4.8)式我们可以直接得到

$$\begin{split} \frac{\mathrm{d}N_1}{\mathrm{d}t} &= r_1 N_1 \left(1 - \left(\frac{N_1}{P_1} \right)^{\alpha_1} - u \left(\frac{N_2}{P_1} \right)^{\alpha_2} \right) - m N_1 \\ &\leq r_1 N_1 \left(1 - \left(\frac{N_1}{P_1} \right)^{\alpha_1} - u \left(\frac{N_2^* - \varepsilon}{P_1} \right)^{\alpha_2} \right) - m N_1 \\ &\leq \left(r_1 \left(1 - u \left(\frac{N_2^* - \varepsilon}{P_1} \right)^{\alpha_2} - \frac{m}{r_1} \right) - \frac{r_1 N_1^{\alpha_1}}{P_1^{\alpha_1}} \right) N_1 \end{split} \tag{4.14}$$

根据文献[11]引理 2.2,有

$$\lim_{t \to +\infty} \inf N_1(t) \ge P_1 \left(1 - u \left(\frac{N_2^* + \varepsilon}{P_1} \right)^{\alpha_2} - \frac{m}{r_1} \right)^{\frac{1}{\alpha_1}}$$

$$\tag{4.15}$$

$$\lim_{t \to +\infty} \sup N_1(t) \le P_1 \left(1 - u \left(\frac{N_2^* - \varepsilon}{P_1} \right)^{\alpha_2} - \frac{m}{r_1} \right)^{\frac{1}{\alpha_1}}$$

$$\tag{4.16}$$

由(4.15), (4.16), 我们可以得到, 对于充分小的 $\varepsilon > 0$, 有

$$\lim_{t \to +\infty} N_1(t) = P_1 \left(1 - u \left(\frac{N_2^*}{P_1} \right)^{\alpha_2} - \frac{m}{r_1} \right)^{\frac{1}{\alpha_1}} = N_1^*$$
(4.17)

下面我们再证明系统(1.2)不存在极限环,我们由(4.15)还可以得到

$$\lim_{t \to +\infty} \sup N_1(t) \le P_1 \left(1 - \frac{m}{r_1} \right)^{\frac{1}{\alpha_1}} \tag{4.18}$$

根据(4.13)和(4.18),当对于充分小的 $\varepsilon > 0$,当 $t \ge T_2$ 时,系统(1.2)位于 R_{\perp}^2 的解最终落在如下区域:

$$D = \left\{ \left(N_1, N_2 \right) \middle| N_1 < P_1 \left(1 - \frac{m}{r_1} \right)^{\frac{1}{\alpha_1}} + \varepsilon, N_2 < N_2^* + \varepsilon \right\}$$
 (4.19)

我们再考虑 Dulac 函数 $V(N_1, N_2) = N_1^{-1} N_2^{-1}$, 则

$$\frac{\partial (VP)}{\partial N_1} + \frac{\partial (VQ)}{\partial N_2} = -\left(\frac{r_1\alpha_1}{N_2P_1^{\alpha_1}}N_1^{\alpha_1-1} + \frac{r_2\alpha_3}{N_1P_2^{\alpha_3}}N_1^{\alpha_3-1}\right) < 0 \tag{4.19}$$

由 Dulac 判别法得到系统(1.2)在 D 内不存在极限环,由此可见, E_4 是全局渐近稳定的。定理 4.2(2) 得证。

6. 生态意义

本文提出了一类两个种群都遭到环境污染,具有非线性偏害水平的种群偏害系统,讨论了平衡点 $E_1\big(0,0\big),\ E_2\Bigg(P_1\bigg(1-\frac{m}{r_1}\bigg)^{\frac{1}{c_1}},0\Bigg),\ E_3\big(0,N_2^*\big),\ E_4\big(N_1^*,N_2^*\big)$ 的局部稳定性和全局稳定性。表 1 讨论了系统(1.2)

在平衡点
$$E_3$$
, E_4 的生态意义,设污染率临界值 $m^* = r_1 \left(1 - u \left(\frac{N_2^*}{P_1}\right)^{\alpha_2}\right)$ 。

Table 1. Ecological significance of the system (1.2) at the equilibrium point 表 1. 系统(1.2)平衡点的生态意义

平衡点	污染率	稳定性	生态意义
$E_{_3}$	$m < m^*$	不稳定鞍点	第二种群已经达到污染后的最大容量,而第一种群非常小。污染率不超过临界值, 第二种群对第一种群的抑制作用有限,随时间变化第一种群又会上升,即该点是不 稳定的。
	$m > m^*$	稳定点	当污染了超过临界值,抑制作用就会非常强,在偏害系统中第二种群就会占领整个 生存空间,第一种群无法生存,从而该点是稳定点。
$E_{\scriptscriptstyle 4}$	$m > m^*$	不稳定鞍点	两类种群分别稳定于正平衡点,污染率超过临界值时,第二种群对第一种群的抑制 作用就会非常强,使得第一种群无法生存,数量急剧下降,该点不是稳定。
	$m < m^*$	稳定点	当污染率低于临界值时,第二种群抑制作用有限,二者达到稳定共生。

将文献[6]的 Lotka-Volterra 模型提出的抑制率和本文的污染作用临界值进行对比分析发现,设抑制作用临界值 $u^* = \left(1 - \frac{m}{r_1}\right)\left(\frac{N_2^*}{P_1}\right)^{-\alpha_2}$,当 $m < m^*$ 时,我们会得到时 $u < u^*$,这该式表明环境污染会影响第二种群对第一种群的抑制能力,二者密切相关。

另外,我们对比非线性偏害共生模型[9],可以发现关于系统(1.1),(1.2)的一个有趣现象。两系统有各自唯一的正平衡点 $(\widetilde{N_1^*},\widetilde{N_2^*})$, (N_1^*,N_2^*) 都是全局渐近稳定的,但在参数满足定理 2.1 条件下,有 $N_1^* > \widetilde{N_1^*}$, $N_2^* < \widetilde{N_2^*}$,这说明虽然两个种群环境污染率 m 相同,但对于系统(1.2)两个种群的最终数量会产生不同的影响。 $N_1^* > \widetilde{N_1^*}$ 说明受污染影响,第一种群最终数量未减反而增加, $N_2^* < \widetilde{N_2^*}$ 说明第二种群数量最终会减少,推广了文献[12]的结论。可以说,虽然偏害共生系统对第一种群有害而对第二种群无利弊影响,但因环境污染对第二种群的影响远高于第一种群,作为食物链终端的人类,将会成为环境污染

的根本受害者。

基金项目

防灾科技学院教育研究与教学改革项目(JY2017A04);河北省高等教育教学改革研究与实践项目(2017GJJG254)。

参考文献

- [1] 曹明,王霞,唐三一. 污染环境中广义单种群模型的动力学行为分析[J]. 工程数学学报, 2020, 37(1): 27-42.
- [2] 李大秋, 王东海. 环境污染事故灾害的特点与影响分析[J]. 灾害学, 1997, 12(3): 93-96.
- [3] 竺可桢. 物理学[M]. 北京: 科学出版社, 1973: 1-3.
- [4] 陈兰荪. 生物数学引论[M]. 北京: 科学出版社, 1988.
- [5] Chen, F., Chen, X. and Huang, S. (2016) Extinction of a Two Species Non-Autonomous Competitive System with Beddington-DeAngelis Functional Response and the Effect of Toxic Substances. *Open Mathematics*, **14**, 1157-1173. https://doi.org/10.1515/math-2016-0099
- [6] Xiong, H.H., Wang, B.B. and Zhang, H.L. (2016) Stability Analysis on the Dynamic Model of Fish Swarm Amensalism. *Advances in Applied Mathematics*, **48**, 255-261. https://doi.org/10.12677/AAM.2016.52032
- [7] Lu, H.Y. and Yu, G. (2015) Permanence of a Gilpin-Ayala Predator-Prey System with Time-Dependent Delay. *Advances in Difference Equations*, **2015**, Article NO. 109. https://doi.org/10.1186/s13662-014-0354-x
- [8] Wang, D.H. (2016) Dynamic Behaviors of an Obligate Gilpin-Ayala System. Advances in Difference Equations, 2016, Article NO. 270. https://doi.org/10.1186/s13662-016-0965-5
- [9] Wu, R.X. (2018) Dynamic Behaviors of a Nonlinear Amensalism Model. Advances in Difference Equations, 2018, Article NO. 187. https://doi.org/10.1186/s13662-018-1624-9
- [10] Chen, L.S. (1988) Mathematical Models and Methods in Ecology. Science Press, Beijing. (in Chinese)
- [11] Chen, F.D. and Xie, X.D. (2014) Study on the Dynamic Behaviors of Cooperation Population Modeling. Science Press, Beijing.
- [12] 王喆, 姜玉秋. 环境污染对生态种群影响的数学动力学分析[J]. 通化师范学院学报, 2017, 38(12): 32-35.