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摘  要 

蓬莱镇组为典型的浅水三角洲前缘沉积，河道砂体为其优势相带。为解决蓬莱镇组砂体纵横向变化快，

对比难度大，河道砂体分布复杂等难题，增产增效，亟需对河道砂体进行精细刻画并完成储层的定量预

测。针对该区河道砂体的地质地震特点，本文以测井标定地震，地震反馈测井，井震互馈精确划分小层。

根据不同厚度砂体的振幅与地震频率的关系，分频刻画河道砂体并将不同频率切片利用RGB融合技术进

行融合，进一步刻画河道边界。采用基于神经网络的智能属性融合预测砂体厚度，提高储层定量预测的

精度，在一定程度上改善了单一属性分析存在的多解性问题。结果显示：1) 与原始数据体相比，高频、

低频振幅属性分别对薄层、厚层砂体有更好的识别效果，进行分频RGB融合后，亮色河道边界更加清晰。

2) 与单一属性相比，基于神经网络的智能属性融合技术的定量预测可靠性得到提升，与砂体厚度的相关

系数可达0.784，较单一属性提升约10%。 
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Abstract 
The Penglaizhen Formation is a typical shallow-water delta front deposit, and the channel sand bodies 
are its dominant facies belts. In order to solve the difficult problems such as the rapid vertical and 
horizontal changes of sand bodies in the Penglaizhen Formation, the great difficulty in correlation, 
and the complex distribution of channel sand bodies, and to increase production and efficiency, it is 
urgent to conduct a detailed characterization of the channel sand bodies and complete the quantita-
tive prediction of reservoirs. In view of the geological and seismic characteristics of the channel sand 
bodies in this area, this paper uses well logging to calibrate seismic data and seismic data to feed back 
to well logging, and realizes the accurate division of thin layers through the mutual feedback between 
wells and seismic data. According to the relationship between the amplitude and seismic frequency of 
sand bodies with different thicknesses, the channel sand bodies are characterized by frequency divi-
sion, and the slices of different frequencies are fused by using the RGB fusion technology to further 
delineate the boundaries of channels. The intelligent attribute fusion method based on neural net-
works is adopted to predict sand body thickness, which improves the accuracy of quantitative reser-
voir prediction and mitigates the non-uniqueness problem inherent in single-attribute analysis to a 
certain extent. The results show that: 1) Compared with the original data volume, the high-frequency 
and low-frequency amplitude attributes have better recognition effects on thin-layer and thick-layer 
sand bodies respectively. After the frequency division RGB fusion, the boundaries of bright channels 
are clearer. 2) Compared with a single attribute, the quantitative prediction reliability of the intelli-
gent attribute fusion technology based on neural network is significantly improved, and the correla-
tion coefficient with the thickness of the sand body can reach 0.784, which is about 10% higher than 
that of the single attribute. 
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1. 引言 

研究区 XD 位于四川省成都市区内，蓬莱镇组是其主力气藏之一，埋藏浅且厚度较大[1]。本文主要

聚焦两点问题：(1) 相带的精细刻画事宜。此前的研究大多依据常规处理的地震资料，以钻井连井小层的

划分以及地震层位的精细拾取为前提，通过井震结合相对准确地确定了优势相带的在研究区内的分布状

况，然而在局部区域，河道的连续性、形态以及边界的刻画还不够明晰[2]。此文运用多属性联合以及分

频 RGB 融合技术，明确河道砂体边界，实施精细的河道砂体刻画。(2) 储层的精细预测与描述问题。XD
地区砂体横向变化快，井网稀疏，仅凭钻井资料结合地震属性进行人工地质统计学反演来对储层开展定

量预测分析精度明显不足；过于依赖钻井资料导致在无井处难以把控储层边界[3] [4]。本文在拥有一定钻

井资料的基础上，基于神经网络的属性融合方式，构建地震属性与砂体厚度之间的非线性关系，得到全

区砂体厚度，提升了储层刻画预测的精准度。 

2. 区域地质概况 

本次研究所属的工区处于四川盆地川西坳陷东部斜坡中部的成都坳陷，北部紧邻梓潼凹陷，四周被
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大型构造带所环绕，分别为北部的新场构造带，东部的知心场构造带以及西北方向的龙门山构造带[5]。
在区域范围内，发育大型断裂带，即彭县–关口断层(图 1)。 

研究区域主要钻探到了侏罗系、白垩系以及第四系地层。当中，侏罗系以蓬莱镇组为主要地层，下

伏遂宁组地层。蓬莱镇组作为研究区的主要产层，自下而上被划分成一段、二段、三段、四段，作为此次

研究目标层的 JP43 小层处在蓬莱镇组一段的下部[6] [7]。 
 

 
Figure 1. Location map of the work area and comprehensive histogram of stratigraphy [8] [9] 
图 1. 工区位置及地层综合柱状图[8] [9] 

3. 地球物理响应特征 

3.1. 测井响应特征 

结合前人的研究成果，明确研究区内蓬莱镇组地层的沉积环境为浅水三角洲前缘，水下分流河道为

其优势相带，河道砂体构成了该气藏的骨架砂体[10] [11]。水下分流河道在纵向上和横向上相互交织发育，

依据“相带控砂、河道控储”原则，亟需在井震结合的基础上，找寻河道砂体，摸清河道发育与展布特

征。本次研究目的层为蓬莱镇组蓬一段底部 JP43 小层，通过对研究区内已知井的钻测井资料分析，得到

该小层河道砂体在岩石学、钻测井上的独有特征。 
钻探显示：本次研究的目的层段 JP43 小层岩性以粉砂岩为主，夹带薄层泥岩，交错层理、平行层理

以及水平层理等典型的水下分流河道沉积层理较为发育，岩性组合总体呈现为“泥包砂”的正旋回。在

测井方面，自然电位、自然伽马、电阻率等测井曲线主要具备齿化箱型、钟型等典型水下分流河道的测

井响应特征。 

3.2. 地震响应特征 

在井上分层的基础上，通过合成地震记录，对目的层 JP43 小层进行精准标定。根据层位标定的结果

来看，目的层 JP43 小层的底刚好与一个波峰相对应。根据典型的测井曲线标定地震剖面(图 2)，发现 JP43
小层在横向上主要的两种沉积微相在地震剖面上的反射特征极易识别，水下分流河道砂体的同相轴表现

为强波谷–强波峰的地震反射特征，振幅强弱程度与砂体厚度整体上表现出正相关性，随着砂体厚度的

增大，反射振幅增强。据此，可将河道砂体与分流间湾的泥岩区别开来。 
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Figure 2. Comparison diagram of D3-DA8 well profile 
图 2. D3-DA8 井剖面连井对比图 

4. 储层平面精细刻画 

通过分析表明，单井点的钻测井、地震等的河道响应特征清楚，地震上主要表现为强振幅的响应特

征。由于地震属性存在多解性，在不同的研究区域，选择用以预测分析的地震属性截然不同，即使在相

同区域的不同目的层段，由于不同的岩性组合方式，所选用的敏感属性也可能存在差异[12]-[14]。因此为

了利用更多的细节信息、更精确地刻画河道砂体，需要结合测井资料分析各类地震属性的相关程度的高

低。在本次的研究当中，通过将多种不同的属性进行对比并优选出均方根振幅属性、最大振幅属性以及

最小振幅属性，用以研究河道砂体的展布和边界的刻画，在此基础上应用分频 RGB 融合技术进一步验证

和刻画河道砂体。 

4.1. 地震属性分析 

振幅类的地震属性主要凸显振幅的异常情况，这类属性之间的相关程度很高，敏感程度大体相同，

其中，平均振幅、总振幅和其他地震属性的相关度较低[15]。在本次研究中，我们采用了均方根振幅属性、

最大振幅属性以及最小振幅来对比描述河道砂体，以确定河道砂体的展布情况。越靠近河道砂体的中部，

振幅属性值往往越高，河道边界振幅值则普遍较中部低，河道之外的泥岩的振幅属性值最低。通过观察

三种不同振幅属性，可以清晰地看到，最大振幅和最小振幅值均较高的位置即为河道砂体，即高亮色的

区域，在平面上呈现弯曲条带状分布，具有明显的河道特征。与之相对应，弱反射低振幅值的泥岩则呈

https://doi.org/10.12677/ojns.2026.141010
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现绿色，在平面上呈现散乱分布(图 3)。 
 

 
(a) 均方根振幅属性                 (b) 最大振幅属性               (c) 最小振幅属性 

Figure 3. Plot of amplitude properties of JP43 stratum 
图 3. JP43 小层振幅属性图 

4.2. 分频技术 

特定厚度的砂体具有特定的响应频率，即调谐频率(表 1)。于该频率体上提取属性，能够更为清晰地

刻画砂体的边界以及内部结构[16] [17]。本文所研究的靶区砂体的厚度普遍小于 20 米，结合研究区的地

震资料、频宽以及地震速度，对原地震体做分频处理，选定 30 Hz、45 Hz、60 Hz 三个频率，完成对不同

厚度砂体的刻画。 
 

Table 1. The tuning frequency of sand bodies with different thicknesses 
表 1. 不同厚度砂体的调谐频率 

调谐频率(Hz) 地震速度(m*s) 砂体厚度(m) 
30 1800 30.0 
45 1800 20.0 
60 1800 15.0 

 

 
(a) 30 Hz 最大振幅属性           (b) 45 Hz 最大振幅属性            (c) 60 Hz 最大振幅属性 

Figure 4. Plot of the maximum amplitude properties of the JP43 lamellae at different frequencies 
图 4. JP43 小层不同频率的最大振幅属性图 
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以振幅属性为例，分别对 30 Hz、45 Hz、60 Hz 地震体提取目的层的最大振幅属性(图 4)。从图中可

见 30 Hz 频率体提取的切片属性反应出的河道相对 45 Hz 频率体更粗，河道范围更小，无法识别厚度较

薄的砂体；而 60 Hz 频率体所提取的切片属性反应出的河道相对 45 Hz 频率体更细，河道范围更大，砂

体分布散乱，对于较大厚度的砂体识别效果不好，因此，通过单一频率所提取属性刻画河道可能无法反

应出砂体的实际分布情况，具有一定的局限性。 

4.3. 分频 RGB 属性融合 

RGB 属性融合基于三原色(Red, Green, Blue)原理，把三种属性参与融合，能将一定厚度地层内的地

质现象分层次、分级别整体刻画，为地质解释提供依据[18] [19]。在单一地层切片中，难以同时确定薄层

河道砂体与厚层河道砂体，而在分频 RGB 地震属性融合切片中，R 通道对应 30 Hz 频率地质体、G 通道

对应 45 Hz 频率地质体、B 通道对应 60 Hz 频率地质体，随着砂岩厚度变化，颜色也随之发生变化[20] 
[21]。因此可采用分频 RGB 融合地层切片进一步刻画河道砂体，有效降低穿时效应、精准刻画河道的连

续性和完整性、有效识别窄小河道的分布[22] [23]。从图 5 的 RGB 融合属性图中可以清晰看出，河道处

呈明显亮色(图 5(a))，相比于单一频率的振幅属性，分频 RGB 融合属性对不同厚度的砂体均有刻画，可

以识别出单一河道无法识别的砂体，并可以使河道边界更加清晰，对研究砂体展布更具现实意义(图 5(b)、
图 5(c))。 

 

 
(a) 分频 RGB 融合切片      (b) 原频率下地震剖面    (c) 分频 RGB 融合后的地震剖面 

Figure 5. Frequency-dividing RGB fusion analysis of JP43 small layers 
图 5. JP43 小层分频 RGB 融合 

5. 基于神经网络的属性融合的河道砂体厚度预测 

由于地下地质情况的复杂性以及钻测井、地震资料的欠缺，潜在的岩石物理机制难以探究。此时，

神经网络技术可以作为学习和评价地下岩石属性之间关系的桥梁[24]。其基本算法是模拟人类大脑对以

测井曲线、地震属性等为输入的系统进行模糊聚类和预测估算。基于神经网络的智能属性融合分析是把

实钻井的砂体厚度作为目标数据集，以井点为圆心，对特定半径范围内提取优选地震属性值作为训练集，

开展基于神经网络的智能属性融合分析，以此来拟合地震属性值与砂体厚度之间的非线性对应关系，一

旦这种非线性的函数关系得以确定，便能够用于预测整个区域的砂体厚度，从而实现定量表征砂体厚度

的目标[25] [26]。 
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Figure 6. Flow diagram of attribute fusion prediction of sand body thickness 
图 6. 属性融合预测砂体厚度流程图 

5.1. 属性优选 

在进行基于神经网络的智能属性融合分析之前，首先对目的层 JP43 小层进行地震属性提取。用于描

述砂体厚度的地震属性主要有振幅类属性、频率类属性、相位类属性及能量类属性，结合目的层位测井、

地震响应特征可知，砂体厚度大处普遍具有强振幅特征，因此本文重点提取三类属性，以振幅类属性为

主，频率类及能量类属性加以辅助。将地震属性进行聚类分析，得到各属性与砂体厚度及各个属性之间

的相关系数如图所示(图 7)。根据相关性分析结果，优选相关系数大于 0.4 的敏感属性用以进行基于神经

网络的智能属性融合分析，分别为均方根振幅属性、最大振幅属性、最小振幅属性以及平均能量属性，

频率类属性与本地区砂体厚度相关性较差，因此不做考虑。 
 

 
Figure 7. Correlation analysis  
图 7. 相关性分析 

5.2. 多属性智能融合砂体厚度预测 

以井点为圆心分别提取半径 20 m 以内的均方根振幅属性值以及平均能量属性值，并将其与 25 口钻
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井实测的砂体厚度进行基于神经网络的非线性机器学习。在开始训练前，通过设置 Error limit 值，增加迭

代次数，提升训练模型的准确度。由于数据数量规模有限，采用交叉验证方式，反复训练对比，选择设

置训练井的比例为 4/5，检验井的比例为 1/5，则整个过程将在保持比例不变的情况下由机器随机选择训

练集和检验集中的井进行比对拟合，因而当基于模型训练得出的砂体厚度预测值与井上真实的砂体厚度

值二者所展示的数据分布规律具有相似性时，则证明基于该模型建立的井上砂体厚度与地震属性值之间

存在的映射关系可靠[27] [28]。基于上述操作，得出砂体厚度与融合地震属性值之间的拟合曲线及映射关

系表达式为 y = 0.696696x + 2.65866。基于神经网络的智能属性融合得到的结果与砂岩厚度的相关系数达

到 0.784，相比单一属性预测砂体厚度的相关性更高，有效提高了储层预测的精度(图 8)。 
 

 
(a) 最大振幅属性预测砂体厚度与实钻砂厚相关性分析   (b) 智能属性融合预测砂厚与实钻砂厚相关性分析 

Figure 8. Comparison of single attribute and fusion attribute to predict sand body thickness 
图 8. 单一属性与融合属性预测砂体厚度对比 

 
在此基础上，将研究区内新实钻井与智能属性融合预测砂体厚度值进行比较，二者的误差值小于 2.5 

m (表 2)，进一步证明基于神经网络的智能属性融合预测砂体厚度的方法可靠。 
 

Table 2. The errors between the predicted sand body thickness and the actual drilled thickness in 6 wells including Well D1-3 
表 2. D1-3 等 6 口井预测砂体厚度与实钻厚度的误差 

井名 预测砂体厚度(m) 实钻砂体厚度(m) 误差(m) 
D1-3 10.38 12.00 1.62 
D3 7.86 9.62 1.76 

D101 7.46 6.47 0.99 
D11 8.06 8.76 0.70 
DA8 7.77 7.02 0.75 
L84D 16.74 14.24 2.50 

 
根据得到的属性融合结果来看，研究区内除 DP401 井附近区域拟合效果稍差外，河道展布与地震属

性吻合度高。其中，河道砂体厚度区间为 8~20 m，颜色主要为黄色和红色；非河道砂体厚度小于 8 m，

颜色主要为蓝色。 
将基于钻井资料手绘砂体厚度图与智能属性融合砂体厚度预测结果对比可以发现，在整体趋势大致

相同的情况下，由于实钻井较少且间隔大，导致缺少钻井处的砂体厚度难以精准把握，河道边界刻画不

够准确，但是基于神经网络的智能属性融合的砂体厚度预测则可以基于算法和已有实钻井的砂体厚度较
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为精准的把握无井处的砂体厚度值，为后续生产开发提供可靠依据(图 9(a)、图 9(b))。 
在砂体厚度的基础上，结合分频 RGB 融合显示的河道边界，绘制河道平面展布图，明确目的层段沉

积微相平面展布特征(图 9(c))。研究区内共识别出两条主河道以及若干条分支河道，其中主河道具有地震

属性值高，砂体厚度大的特征，为研究区的主要有利储层。 
 

 
(a) 手绘砂体厚度图          (b) 智能属性融合砂体厚度预测图          (c) 河道储层平面展布图 

Figure 9. Comparison of hand-drawn sand body thickness and intelligent attribute fusion sand body thickness prediction 
图 9. 手绘砂体厚度与智能属性融合砂体厚度预测对比 

6. 讨论 

本文以 XD 地区侏罗系蓬莱镇组 JP43 小层为例，采用地震属性分析、分频 RGB 融合以及基于神经

网络的砂体厚度预测方法，形成一套河道砂体储层精细刻画的技术方法，意在为窄河道砂体储层预测提

供思路方法。但是，考虑到研究地区地震资料质量、分频及 RGB 融合解释的主观性以及完钻井数量不充

足导致砂体厚度预测不够精确，可能导致精细刻画结果与实钻井存在不符的情况，如 DP401 井区。因此，

在后续研究中应确保地震资料解释的准确性、优化砂体厚度预测模型参数，并且尽量避免样本数据小导

致预测结果精度降低。 

7. 结论 

(1) 基于钻井资料、测井资料确定研究区的沉积环境为浅水三角洲前缘，有利储层为水下分流河道的

砂岩，测井上呈现齿化箱型、钟型的响应特征。根据典型井对目的层 JP43 小层精准标定，井震结合，确

定目的层河道砂体地震响应特征为较连续的强波谷–强波峰强振幅反射。 
(2) 针对目的层河道地震响应特征，选取振幅类属性研究河道砂体展布特征。针对单一频率地震属性

同时刻画薄厚砂体的局限性，优选 30 Hz、45 Hz 及 60 Hz 三个频率分别做地层切片并进行分频 RGB 融

合，进一步刻画河道砂体边界。 
(3) 进行基于神经网络的智能属性融合分析，开展储层砂体厚度定量预测。通过属性优选、融合分析

得出目的层砂体厚度预测图，相较于单一属性预测，属性融合分析结果与砂体厚度相关系数达到 0.784，
提升约 10%。 

(4) 在砂体厚度的基础上，结合地震属性切片、分频 RGB 融合显示的河道分布及边界，完成储层精

细刻画，识别主河道两支，具有地震属性值高、厚度大的特征，为研究区有利储层。 
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