Open Journal of Natural Science B #R%}3£, 2026, 14(1), 89-98 Hans X
Published Online January 2026 in Hans. https://www.hanspub.org/journal/ojns
https://doi.org/10.12677/0jns.2026.141010

ETZRMMS TG ZENEER B ER]E
fi& =T

R PR TR SEREVR 7 e, D)1 il

Weks H . 20254F12 9 #HBEM: 20264F1H5H; KA HM: 20264F1H13H

H E

HEFEANRA K =AM GUIR, BB AR B . NRIESREADEYPBE TR,

MR R, WIEDEIARASEE, e, &ETERD A TR X E B R BT
W o BF2112 DX IT > B 2 R b R AR A, ASCPARUSFAR e Hb /R, MR RIS, HREBREHRIS /DR

BEAEEEDERIRIESHBHRRNRR, 2 EMEREHREAFREY AR FARGBE & B AR
TRE, H—S2EELR . RAETHENAKNERBEHBETNDEER, REMMEEETNK
BE, f—EEELXE TR BEMMEERNZHRERE. £RER: 1) 5REEGEEML, 5.
{RATIRIE B 2 FIXT 2 . BEEDAE BIEHRFIMR, BT 2MRCGBIMA G, AL R FInE.

2) 5E—EHMEL, ZTHENEREERERSEAN BTN REE2RA, SMEEE KRR
REA0.784, BE—RBHERAL10%.

XA
EIREY, WIEPE, SFRGBREIA, MENL%, fhEEETN

Fine Characterization of Narrow
Channel Sand Bodies and Reservoir
Prediction Based on Multi-Attribute
Fusion Method

Xingcong Chen*, Xihe Lu, Zhuoyang Liu, Ruochen Tang
College of Energy, Chengdu University of Technology, Chengdu Sichuan

Received: December 9, 2025; accepted: January 5, 2026; published: January 13, 2026
e

SCEGIF: BRI, TEA, XIS, AR, BT 2 E R A 5 A B AR I E RS AORE 2 2 R A R D). B AR,
2026, 14(1): 89-98. DOI: 10.12677/0jns.2026.141010


https://www.hanspub.org/journal/ojns
https://doi.org/10.12677/ojns.2026.141010
https://doi.org/10.12677/ojns.2026.141010
https://www.hanspub.org/

Abstract

The Penglaizhen Formation is a typical shallow-water delta front deposit, and the channel sand bodies
are its dominant facies belts. In order to solve the difficult problems such as the rapid vertical and
horizontal changes of sand bodies in the Penglaizhen Formation, the great difficulty in correlation,
and the complex distribution of channel sand bodies, and to increase production and efficiency, it is
urgent to conduct a detailed characterization of the channel sand bodies and complete the quantita-
tive prediction of reservoirs. In view of the geological and seismic characteristics of the channel sand
bodies in this area, this paper uses well logging to calibrate seismic data and seismic data to feed back
to well logging, and realizes the accurate division of thin layers through the mutual feedback between
wells and seismic data. According to the relationship between the amplitude and seismic frequency of
sand bodies with different thicknesses, the channel sand bodies are characterized by frequency divi-
sion, and the slices of different frequencies are fused by using the RGB fusion technology to further
delineate the boundaries of channels. The intelligent attribute fusion method based on neural net-
works is adopted to predict sand body thickness, which improves the accuracy of quantitative reser-
voir prediction and mitigates the non-uniqueness problem inherent in single-attribute analysis to a
certain extent. The results show that: 1) Compared with the original data volume, the high-frequency
and low-frequency amplitude attributes have better recognition effects on thin-layer and thick-layer
sand bodies respectively. After the frequency division RGB fusion, the boundaries of bright channels
are clearer. 2) Compared with a single attribute, the quantitative prediction reliability of the intelli-
gent attribute fusion technology based on neural network is significantly improved, and the correla-
tion coefficient with the thickness of the sand body can reach 0.784, which is about 10% higher than
that of the single attribute.
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Figure 1. Location map of the work area and comprehensive histogram of stratigraphy [8] [9]
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Figure 2. Comparison diagram of D3-DAS well profile
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Figure 3. Plot of amplitude properties of JP43 stratum
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Table 1. The tuning frequency of sand bodies with different thicknesses
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P (Hz) OB (m*s) WA (m)
30 1800 30.0
45 1800 20.0
60 1800 15.0
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Figure 4. Plot of the maximum amplitude properties of the JP43 lamellae at different frequencies
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Figure 5. Frequency-dividing RGB fusion analysis of JP43 small layers
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Figure 6. Flow diagram of attribute fusion prediction of sand body thickness
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Figure 8. Comparison of single attribute and fusion attribute to predict sand body thickness
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