https://doi.org/10.12677/ojtt.2025.146070

大粒径水稳砾石CSG-50劈裂强度增长规律

李彦红1, 彭华瑞1, 何树鹏2, 彭嫣然2, 费瀚翔3, 王华涛4,5

- 1伊犁交通投资集团有限公司,新疆 伊宁
- 2山东省路桥集团有限公司, 山东 济南
- 3长安大学公路学院,陕西 西安
- 4新疆交通规划勘察设计研究院有限公司,新疆 乌鲁木齐
- 5新疆高寒高海拔山区交通基础设施安全与健康重点实验室,新疆 乌鲁木齐

收稿日期: 2025年8月31日; 录用日期: 2025年10月28日; 发布日期: 2025年11月5日

摘要

随着公路建设的快速发展,对路面基层材料的性能要求日益提高。大粒径水稳砾石(CSG-50)因其优异的力学性能和耐久性而受到广泛关注。文章通过垂直振动试验方法(VVTM)研究了CSG-50的劈裂强度增长规律,与CSG-30作对比分析了养生龄期、水泥剂量和集料级配对其劈裂强度的影响。结果表明:随着龄期的增长,CSG-50的劈裂强度随水泥掺量的增加呈线性增长趋势;在试件成型的初期阶段,CSG-50的劈裂强度比CSG-30高出约1.30~1.33倍。在水泥稳定砾石的劈裂强度完全形成后,CSG-50的劈裂强度相比CSG-30高出约1.15~1.17倍。

关键词

CSG-50, 劈裂强度, 振动法, 增长规律

Variation Pattern of Splitting Tensile Strength in Large-Size Cement-Stabilized Gravel CSG-50

Yanhong Li¹, Huarui Peng¹, Shupeng He², Yanran Peng², Hanxiang Fei³, Huatao Wang^{4,5}

文章引用: 李彦红, 彭华瑞, 何树鹏, 彭嫣然, 费瀚翔, 王华涛. 大粒径水稳砾石 CSG-50 劈裂强度增长规律[J]. 交通技术, 2025, 14(6): 703-715. DOI: 10.12677/ojtt.2025.146070

¹Yili Transportation Investment Group Co., Ltd., Yining Xinjiang

²Shandong Luqiao Group Co., Ltd., Jinan Shandong

³School of Highway, Chang'an University, Xi'an Shaanxi

⁴Xinjiang Transportation Planning, Survey and Design Institute Co., Ltd., Urumqi Xinjiang

⁵Xinjiang Key Laboratory of Transportation Infrastructure Safety and Health in Alpine and High-Altitude Mountainous Areas, Urumqi Xinjiang

Received: August 31, 2025; accepted: October 28, 2025; published: November 5, 2025

Abstract

With the rapid development of highway construction, the performance requirements for pavement base materials are increasing. Large grained water stable gravel (CSG-50) has received widespread attention due to its excellent mechanical properties and durability. This article studied the growth law of splitting tensile strength of CSG-50 through vertical vibration test method (VVTM), and compared it with CSG-30 to analyze the effects of curing age, cement dosage, and aggregate grade on its splitting tensile strength. The results showed that as the age increased, the splitting tensile strength showed a linear growth trend with the increase of cement dosage; In the initial stage of specimen formation, the splitting tensile strength of CSG-50 is about 1.3~1.33 times higher than that of CSG-30. After the splitting tensile strength of cement stabilized gravel is fully formed, the splitting tensile strength of CSG-50 is about 1.15~1.17 times higher than that of CSG-30.

Keywords

CSG-50, Splitting Tensile Strength, Vibration Method, The Law of Growth

Copyright © 2025 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Open Access

1. 引言

道路基层材料的性能直接决定了路面的结构稳定性和服役寿命,而传统的半刚性基层材料在早期易出现裂缝等病害。在诸如新疆等西部地区,破碎砾石和砾石因其成本效益和环保的特点,常被用作路面基层材料,然而实际应用中发现,水泥稳定破碎砾石(CSCG)基层常常遭遇早期病害,如开裂等问题[1]。这主要是因为破碎砾石相较于碎石破碎面少、表面光滑、棱角性不足,使得 CSCG 的强度相对较弱,且更易发生离析现象[2] [3]。

近年来,国内外学者针对水泥稳定类基层材料的性能优化开展了广泛研究。国内研究以增强抗裂性与强度提升为核心,王鸿凯[4]通过优化级配设计构建多级嵌挤结构,掺入聚丙烯纤维等聚合物,结合水泥掺量调控及西部环境适配技术,显著改善了材料的早期性能。针对高寒地区低温环境,韩龙等[5]研究提出通过添加剂(如 C 类早强剂)提升早期强度,指出低温环境下水泥稳定材料的冻融损伤问题及防治措施。赵文硕[6]以水泥稳定煤矸石混合料作为研究载体,基于力学性能、抗冻融性能和抗干缩性能建立灰色关联度确定最佳水泥掺量,并分析其路用性能。然而,现有研究存在局限性,诸如多基于碎石材料建立理论模型,忽视破碎砾石因棱角少、表面光滑导致的黏结性能差异,以及试验多关注 28 天短期强度,缺乏长期干湿循环、冻融耦合荷载下的耐久性验证[7]-[9],Yi Yong 等[10]对于 CTB-50 与 CTB-30 混合料的研究表明,振动压实值(VVTM)与现场钻取芯样的力学强度呈现显著的相关性(相关系数 >0.90)。同时,压实后的级配变异程度较低。

大粒径水稳砾石 CSG-50 凭借其优异的力学性能与抗裂性[11],为破解上述难题提供了新思路。基于此,本文通过系统室内试验,对 CSG-50 水泥稳定砾石劈裂强度进行探究,研究其强度增长规律,以为工程建设提供科学的理论指导。

2. 材料和方法

2.1. 试验材料

2.1.1. 粗集料

粗集料选用新疆产大粒径破碎砾石,并按粒径范围划分为四个规格: 37.5 mm~53 mm、19 mm~37.5 mm、9.5 mm~19 mm 及 5 mm~10 mm,技术性质指标检测结果见表 1。

Table 1. Technical indexes of coarse aggregate

表 1	粗集料技术指标

국과4-+	不同粒径(mm)粗集料技术指标检测结果						
技术指标	37.5~53	19~37.5	9.5~19	5~10			
表观相对密度	2.614	2.568	2.544	2.518			
针片状颗粒含量(%)	1.8	7.6	11.7	14.5			
吸水率(%)	0.39	0.69	1.54	0.87			
压碎值(%)		1:	5.8				
磨耗值(%)		10	5.7				
坚固性(%)		3	.5				
软石含量(%)		1	.3				

2.1.2. 细集料

细集料采用新疆地区生产的破碎砾石,技术指标见表 2。

Table 2. Technical indicators of fine aggregate

表 2. 细集料技术指标

指标	测试值	规范值
表观相对密度(g/cm³)	2.58	2.5
泥块含量(%)	0	1.0
压碎指标(%)	14	20

运用i值法进行计算,得到最佳级配。i值法是细集料级配优选的一种常用方法,通过评估其填充能力,确定最优级配组合。这种方法能够量化细集料的工程性能,为水泥稳定砾石的配比设计提供科学依据,以确保材料的性能和可靠性,计算公式见式(1):

$$p_{x} = (i)^{x} \times 100\%$$

式中: i 为通过百分率的递减率, %;

$$x$$
 为级数, $x = 3.32 \lg \frac{D}{d_x}$;

D为最大粒径,mm;

 d_r 为各档粒径,mm。

结合工程经验以及材料特性,i 值选取为 0.55、0.60、0.65、0.70, 并基于 i 值法计算 CSG-50 细集料

级配,成型细集料级配试件,水泥掺量为 3%,测试试件 7 d 抗压强度和劈裂强度确定 i 值,对不同的 i 值 对应级配 D5 档集料进行成型试件,不同 i 值对应的 D5 档集料通过率见表 3,并测试其抗压强度 R_c ,劈 裂 R_i 试验结果见表 4。

Table 3. Pass rate corresponding to different *i* values 表 3. 不同 *i* 值对应的通过率

		不同筛孔的通过率(%)									
<i>i</i> [E.	4.75	2.36	1.18	0.6	0.3	0.15	0.075				
0.55	100.0	54.3	32.1	17.3	8.4	4.5	3.8				
0.60	100.0	63.2	34.2	20.7	11.0	7.1	5.4				
0.65	100.0	66.5	43.5	25.3	19.3	12.1	9.3				
0.70	100.0	72.5	49.8	34.2	24.9	17.8	12.1				

Table 4. Mechanical strength of different gradations corresponding to different *i* values 表 **4.** 不同 *i* 值对应级配的力学强度

i 值	0.55	0.60	0.65	0.70
R_c (MPa)	1.54	2.03	2.69	1.95
R_i (MPa)	0.15	0.17	0.18	0.16

由表 3 可知,D5 档集料的 7 d 无侧限抗压强度随 i 值的增大呈先增大后减小的趋势,并在 i 值为 0.65 时达到峰值。其 7 d 劈裂强度随 i 值增大也呈现相似规律,同样在 i 值为 0.65 时取得最大值。表明当 i 值为 0.65 时,D5 档集料具有最佳的力学性能。因此,i 值取 0.65 时 D5 档细集料的级配最优。

2.1.3. 粗细集料比

基于不同粗细集料比模拟抗压回弹模量的过程,对优选的集料质量比进行分析,由表 5 可得到不同粗细集料比例下试件的抗压回弹模量,从而确定出集料质量最佳比例。

Table 5. Compressive rebound modulus of specimens with different proportions of coarse and fine aggregates 表 5. 不同粗细集料比例下试件的抗压回弹模量

(D1 + D2 + D2) ₂ /D4 + D5) =	$D4:D5$ 下试件的抗回弹模量 E_c (MPa)						
(D1 + D2 + D3):(D4 + D5) —	1:2	1:3	1:4	1:5			
50:50	896	973	1017	961			
55:45	964	1007	1046	995			
60:40	1059	1103	1127	1096			
65:35	982	1037	1059	1003			
70:30	939	995	1002	981			

通过 PFC 抗压回弹模量选取的比例,与根据力学试验结果选取的集料质量比相同。最终确定(D1 + D2 + D3):(D4 + D5) = 60:40、(D4:D5) = 1:4。

2.1.4. 级配范围

并依据实际的工作经验,本文优化级配确定的 53 mm 筛孔通过率范围在 100%。根据级配扩充方法,得到 CSG-50 级配范围,与 CTB-50 水泥稳定碎石级配作对比,并给出 CSG-50 合成级配,结果见表 6。

Table 6. Comparison of gradation ranges between CSG-50 and CTB-50 表 6. CSG-50 与 CTB-50 级配范围对比

类型 -		通过以下筛孔(mm)的质量百分率(%)								
大	火 型		37.5	19	9.5	4.75	2.36	0.6	0.075	
	级配上限	100	75	64	45	36	25	11	5	
000.50	级配下限	100	67	57	35	28	18	7	2	
CSG-50	级配中值	100	70.5	67.5	40	32	21.5	9	3.5	
	合成级配	100	73.3	65.4	41.2	33.5	23.4	8.7	3.3	
	级配上限	100	75	65	47	35	25	13	6	
CTB-50	级配下限	100	65	55	37	27	17	7	2	
	级配中值	100	70	60	42	31	21	9.5	4	

为系统研究级配类型、水泥掺量及养护龄期对水泥稳定砾石力学强度的影响规律,本研究采用 CSG-30 和 CSG-50 两种典型级配,设定水泥掺量(以混合料干质量为基准)为 2.0%、2.5%、3.0%、3.5%、4.0%,并选取 3 d、7 d、14 d、28 d、60 d、90 d、120 d 养护龄期进行试验分析。CSG-30 与 CSG-50 水泥稳定砾石的具体级配参数详见表 7。

Table 7. Mineral gradation 表 7. 矿料级配

级配类型			通过门	下列筛孔尺	!寸(mm)质	量百分数	(%)		
	53	37.5	31.5	19	9.5	4.75	2.36	0.6	0.075
CSG-30	100	100	94	64	42	32	24	12	4.5
CSG-50	100	73	68	61	40	32	21	9	4

2.1.5. 水泥

选用新疆地区广泛使用的42.5级复合硅酸盐水泥,其技术指标见表8。

Table 8. Inspection results of technical indicators of cement 表 8. 水泥技术指标检验结果

水泥性能	检验结果	技术要求
安定性(mm)	1.5	<5
细度(%) (80 μm 方孔筛)	3.2	≤10
初凝时间(h)	4.5	>3 h
终凝时间(h)	7	6~10

续表			
3 d 强度(MPa)	抗压	20.4	≥11
3 d 强度(MPa)	抗折	4.6	≥2.5
28 d 强度(MPa)	抗压	49.1	≥32.5
	抗折	8.7	≥5.5

2.2. 试验方法

2.2.1. 垂直试验方法

使用垂直振动击实仪进行振动击实试验,具体构造如图 1 所示[12] [13]。试验前将待用的集料置于恒温烘箱中进行烘干处理,当其质量不再变化时停止烘干。烘箱温度设置在 100℃~105℃之间,以确保集料中的水分被有效蒸发。

Figure 1. VVTE construction 图 1. VVTE 构造

试验步骤如下:

- ① 原料准备:对集料进行烘干,准备5至6份。
- ② 集料混合:对干集料充分拌合后,按配比加入水泥继续拌和,直至混合料均匀。
- ③ 拌合:根据混合料质量计算所需加水量,即 $(m_s + m_j) \times \omega_i$,其中 ω_i 为含水率(%)。然后将水加入混合集料中,彻底搅拌至均匀。
 - ④ 装模:将混合料均匀装入试模。
 - ⑤ 振动压实:通过控制系统对试模进行固定,调整振动锤紧贴试件表面,振动时长约150s。
- ⑥ 脱模:振动后,使振动锤上升,取出试模置于脱模机上脱模。试样高度应在 200 mm ± 2 mm。若高度不符,调整混合集料用量,重复上述步骤制备试样。
 - ⑦ 计算干密度: 第i次试验试样的干密度 ρ_{ii} , 计算公式见式(1)[14]。

$$\rho_{di} = \frac{m_i - m_0}{V_i} \times \frac{1}{1 + 0.01 w_i} \tag{1}$$

式中: ρ_{di} 为第 i 次试验试件的干密度, g/cm^3 ;

 m_i ——第 i 次试验时的试件质量, g_i

 m_0 ——试模的质量, g;

 w_i ——第 i 次试验时加入混合料中的拌和含水率,%;

 V_i ——第 i 次试验时的试样体积, cm³。

- ⑧ 拌合含水率调整:以试验前后混合料质量 m_1 与 m_2 差异为基准,质量差若≤50 g,下次试验的拌合含水率提高 0.5%;若差异>50 g,拌合含水率减少 0.7%。
- ⑨ 试验重复与曲线绘制: 重复步骤①至⑧约5至6次,据此绘制干密度与含水率的关系曲线,从而确定最大干密度和最佳含水率。

2.2.2. 劈裂强度试验

根据《公路工程无机结合料稳定材料试验规程》(补充规范号)中规定的什么方法进行测试,CSG-30 采用规范要求尺寸的劈裂条,针对 CSG-50 定制了适配 Φ 200 mm × h200 mm 尺寸的劈裂夹具,具体劈裂试验装置如图 2 所示,劈裂试验过程如图 3 所示。

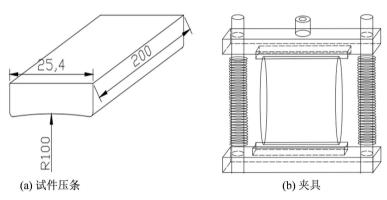


Figure 2. Splitting tensile test apparatus 图 2. 劈裂试验装置

劈裂强度按式(2)计算[15]:

$$R_i = \frac{2F}{\pi Dh} \left(\sin 2\beta - \frac{b}{D} \right) = \frac{2}{639} \times \frac{F}{h}$$
 (2)

式中: R_i —— 劈裂强度(MPa); D —— 试件直径(mm); h —— 浸水后试件高度(mm); F —— 最大压力(N); b —— 压条宽度(mm)。

Figure 3. Splitting tensile test diagram 图 3. 劈裂试验图

3. 试验结果分析

3.1. 劈裂强度演化规律

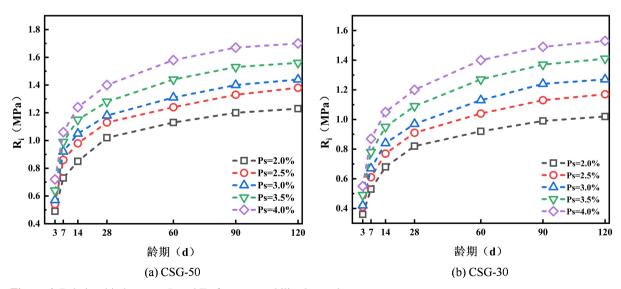

劈裂强度试验结果见表 9, 表中数据均为强度代表值。

Table 9. Split strength R_i test results **表 9.** 劈裂强度 R_i 试验结果

类型	*/ 沿刻是(0/)			下列龄	朝劈裂强度 F	R _i (MPa)		
天 至	水泥剂量(%) -	3	7	14	28	60	90	120
	2.0	0.49	0.73	0.85	1.02	1.13	1.20	1.26
CSG-50	2.5	0.54	0.86	0.98	1.13	1.24	1.33	1.42
	3.0	0.57	0.92	1.05	1.18	1.31	1.40	1.48
	3.5	0.64	0.99	1.15	1.28	1.44	1.53	1.60
	4.0	0.72	1.06	1.24	1.40	1.58	1.67	1.75
	2.0	0.36	0.53	0.68	0.82	0.92	0.99	1.04
	2.5	0.41	0.61	0.77	0.95	1.04	1.13	1.21
CSG-30	3.0	0.42	0.67	0.84	0.97	1.13	1.24	1.28
	3.5	0.49	0.78	0.95	1.09	1.27	1.37	1.44
	4.0	0.55	0.87	1.05	1.20	1.40	1.49	1.58

绘制出 CSG-50、CSG-30 劈裂强度随着养生龄期变化的趋势曲线,如图 4 所示,其中两种不同粒径的级配水泥掺量为: 2.0%、2.5%、3.0%、3.5%、4.0%。

3.1.1. 随养生龄期增长规律

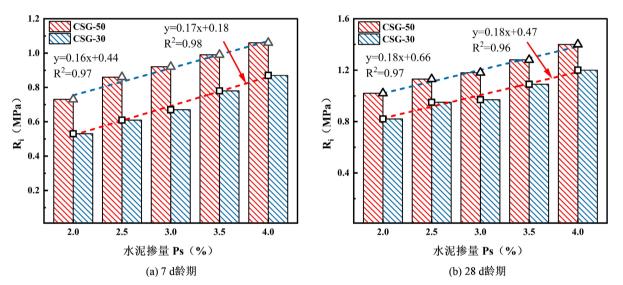


Figure 4. Relationship between R_i and T of cement-stabilized gravel **图 4.** 水泥稳定砾石 R_i ~T 关系

图 4 展示了 CSG-50 与 CSG-30 两种级配水泥稳定砾石的劈裂强度(R_i)随养生龄期(T)的变化规律,试验涵盖水泥掺量 2.0%至 4.0%的工况。以 3%水泥掺量为例,CSG-50 试件劈裂强度由 3 d 的 0.57 MPa 增至 14 d 的 1.05 MPa,增幅达 84%;CSG-30 试件则由 0.42 MPa 增至 0.67 MPa,增幅 59%。此阶段水泥水化反应剧烈,生成大量 C-S-H 凝胶,显著提升界面黏结强度。CSG-50 试件强度由 1.05 MPa 增至 1.31 MPa,CSG-30 试件由 0.84 MPa 增至 1.13 MPa(增幅 34%)。水化反应速率下降,孔隙填充效应主导强度增长。60 d~90 d 龄期内,CSG-50 与 CSG-30 试件强度增幅分别降至 12%与 13%,表明材料性能逐渐趋近极限值。在养护初期阶段(T<14 天),劈裂强度的增长较为迅速。这一时期内,水泥的水化反应极为剧烈,水化产物持续增加,导致劈裂强度的增长速率加速。28 天之后,增长速率开始减缓,至 90 天后,劈裂强度的增长变得缓慢并逐渐趋于稳定。

3.1.2. 随水泥剂量增长规律

不同水泥掺量 CSG-50、CSG-30 的 7 d、28 d 龄期的劈裂强度增长曲线如图 5 所示。

Figure 5. R_i growth curve at different cement doses **图 5.** 不同水泥剂量下 R_i 增长曲线

劈裂强度随水泥掺量的增加呈线性增长趋势。从图中可以看出,劈裂强度随水泥掺量的增加呈线性增长趋势,并且 CSG-50 的劈裂强度高于 CSG-30,可能是因为粒径大小导致了这种差异,CSG-50 试件相较于 CSG-30 试件,骨料之间形成了更坚实的嵌挤骨架结构,因此具有更高的劈裂强度。

3.1.3. 随粒径增大变化规律

绘制强度比平均值散点图,如图 6 所示。

由图 6 可知,在试件成型的初期阶段,CSG-50 的劈裂强度比 CSG-30 高出约 1.3~1.33 倍。在水泥稳定砾石的劈裂强度完全形成后,CSG-50 的劈裂强度相比 CSG-30 高出约 1.15~1.17 倍。

在水泥稳定砾石试件成型初期(水泥水化反应未发生或仅部分发生阶段),劈裂强度主要由骨料间嵌挤力主导。CSG-50 因粒径大于 CSG-30,其粗骨料形成的密实骨架嵌挤力更强,使早期劈裂强度提升约 30%。随着龄期增长,水泥水化反应逐步完成,劈裂强度由"嵌挤力主导"转变为"嵌挤力-水化胶结协同作用"模式,水化产物对强度的贡献持续增强,而嵌挤力占比逐渐降低。绘制 CSG-50、CSG-30 的 R_7 与 P_5 关系,如图 7 所示。

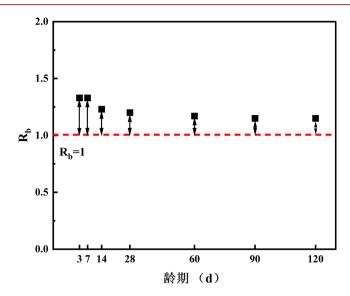


Figure 6. Ratio of splitting tensile strength between CSG-50 and CSG-30 图 6. CSG-50 与 CSG-30 的劈裂强度之比

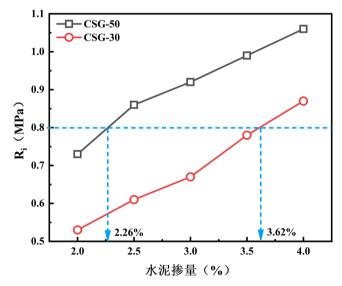


Figure 7. Relationship between fracture strength and cement dosage 图 7. 劈裂强度与水泥掺量的关系

从图中可以看出,在养生龄期为 7 天时,如果在相同的强度控制指标下调整水泥的掺量,达到相同的劈裂强度,CSG-50 所需的水泥掺量低于 CSG-30。具体来说,若目标是在 7 天养护期内达到 0.8 MPa,CSG-50 的水泥掺量需为 2.26%,而 CSG-30 则需为 3.62%。这表明,在实际的工程应用中,使用 CSG-50 能显著减少水泥用量,带来经济和环境效益。

3.2. 劈裂强度增长方程与预测模型

3.2.1. 劈裂强度增长方程

(1) 极限强度

伴随着养生龄期的增长,可以发现水泥稳定砾石的劈裂强度曲线的斜率逐渐减小,劈裂强度会稳定

在一个极限值 $R_{i\infty}$ 。水泥的水化反应完全结束时,水泥稳定砾石的强度接近极限强度 $R_{i\infty}$,即 $T=T_{\infty d}$ 时, $R_{iT}=R_{i\infty}$ 。

(2) 增长方程

根据以上研究, 劈裂强度的增长具有以下约束条件, 见式(3), CSG-50、CSG-30 劈裂强度增长方程, 见式(4)。

$$\begin{cases} R_{i0} < R_{i\infty} \\ R_{iT} = 0 & T = 0 \\ R_{iT} = R_{i\infty} & T = \infty \end{cases}$$

$$(3)$$

$$R_{iT} = R_{i\infty} - \frac{R_{i\infty} - R_{c0}}{\lambda \cdot T + 1} \tag{4}$$

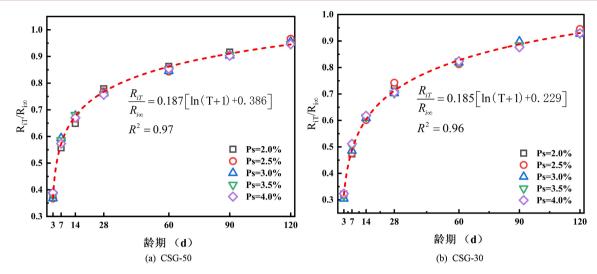
式中: T---龄期, d;

 R_{iT} ——养生 Td 时的强度,MPa;

*R*_{ico} ——极限强度,MPa;

 R_{i0} ——成型时强度,MPa;

λ ——劈裂强度增长系数。


3.2.2. 劈裂强度增长预测模型

根据表 9 数据计算出水泥稳定砾石 $R_{iT}/R_{i\infty} \sim T$,见表 10。

Table 10. Results of $R_{iT}/R_{i\infty}$ for different age groups 表 10. 不同龄期 $R_{iT}/R_{i\infty}$ 结果

级配类型	水泥剂量(%)	不同龄期(d) $R_{iT}/R_{i\infty} \sim T$						
级乱矢至	小心刑里(%)	3	7	14	28	60	90	120
CSG-50	2.0	0.34	0.56	0.65	0.78	0.86	0.92	0.96
	2.5	0.37	0.59	0.67	0.77	0.84	0.9	0.97
	3.0	0.37	0.59	0.68	0.76	0.85	0.9	0.95
	3.5	0.38	0.59	0.68	0.76	0.85	0.91	0.95
	4.0	0.39	0.57	0.67	0.76	0.85	0.9	0.95
	2.0	0.32	0.47	0.61	0.73	0.82	0.88	0.93
	2.5	0.32	0.48	0.6	0.74	0.81	0.88	0.95
CSG-30	3.0	0.3	0.49	0.61	0.7	0.82	0.9	0.93
	3.5	0.32	0.5	0.61	0.7	0.82	0.88	0.93
	4.0	0.32	0.51	0.62	0.71	0.82	0.88	0.93

考虑不同养护龄期时 $R_{iT}/R_{c\infty}$ 与养护时间 T 的关系,根据表 10 绘制出图 $R_{iT}/R_{i\infty}\sim T$ 曲线,见图 8。

Figure 8. Cement-stabilized gravel $R_{iT}/R_{i\infty} \sim T$ fitting

图 8. 水泥稳定砾石 $R_{iT}/R_{i\infty} \sim T$ 拟合

 $R_{iT}/R_{i\infty}$ 与 T 曲线近似服从幂函数。因此,可假设水泥稳定砾石 $R_{iT}/R_{i\infty} \sim T$ 存在幂函数关系。因此建立劈裂强度预测模型,见式(5)。

$$\frac{R_{iT}}{R_{i\infty}} = g \left[\ln \left(T + 1 \right) + B \right] \quad T \le 120 \ d \tag{5}$$

式中: $g \setminus B$ 为回归系数。

采用式(5)对表 10 数据进行拟合,回归参数见表 11,其中 R²为相关系数。

Table 11. $R_{iT}/R_{i\infty T}$ fitted regression coefficients

表 11. $R_{iT}/R_{i\infty T}$ 拟合回归系数

类型 -	$R_{_{\!\scriptscriptstyle 1T}}/R_{_{\!\scriptscriptstyle 1ooT}}$ 拟合回归参数		
	g	В	\mathbb{R}^2
CSG-50	0.187	0.386	0.974
CSG-30	0.185	0.229	0.963

拟合方程相关系数 R^2 不小于 0.963,表明所建立的预测模型可较好地预测 CSG-50、CSG-30 的劈裂强度,具体预测模型见式(6)。

$$\begin{cases} CSG - 50: & \frac{R_{iT}}{R_{i\infty}} = 0.187 \left[\ln \left(T + 1 \right) + 0.386 \right] & T \le 120 \ d \\ CSG - 30: & \frac{R_{iT}}{R_{i\infty}} = 0.185 \left[\ln \left(T + 1 \right) + 0.229 \right] & T \le 120 \ d \end{cases}$$
(6)

为了更好地进行预测强度以及更加充分的运用研究成果,由表 8 可知,CSG-50、CSG-30 的 R_{i7} 与 $R_{i\infty}$ 之比的均值分别为 0.58、0.49,则预测模型式(6)可转换为式(7)。

$$\begin{cases} CSG - 50 : R_{iT} = 0.322 R_{i7} \left[\ln (T+1) + 0.386 \right] & T \le 120 \ d \\ CSG - 30 : R_{iT} = 0.377 R_{i7} \left[\ln (T+1) + 0.229 \right] & T \le 120 \ d \end{cases}$$
(7)

4. 结论

本文开展了大粒径水稳砾石 CSG-50 劈裂强度增长规律的研究,得到如下结论:

- (1) CSG-50 与 CSG-30 水泥稳定砾石的劈裂强度演化呈现显著龄期依赖性,其强度增长过程可分为三个阶段: $0 \, d\sim60 \, d$ 龄期内,水泥水化产物(C-S-H 凝胶)的快速生成驱动劈裂强度显著提升(CSG-50 增幅达 84%,CSG-30 为 59%); $60 \, d\sim90 \, d$ 阶段,受水化反应扩散机制限制,强度增速趋缓(增幅降至 $12\%\sim13\%$),逐渐逼近理论极限值 $R_{i\infty}$ 。
- (2) 级配差异性分析表明,CSG-50 因粗骨料(D50 = 19 mm)形成的密实嵌挤骨架结构,其 7 d 龄期劈裂强度比达 $1.30 \sim 1.33$ 倍,且长期性能(T > 60 d)差异收敛至 $15\% \sim 17\%$,反映水泥胶结作用逐步主导强度发展。
- (3) 经济性量化结果显示,劈裂强度与水泥掺量呈线性正相关,CSG-50 在 7 d 龄期达到目标强度 R_i = 0.8 MPa 时,水泥掺量(2.26%)较 CSG-30 (3.62%)降低 37.6%,单位体积水泥节约量达 15 kg/m³~20 kg/m³。 基于水化动力学模型与级配优化效应,建议工程中优先采用 CSG-50 级配设计,在保障结构性能的同时实现资源高效利用与低碳化目标。

基金项目

新疆交通运输厅 2022 年度交通运输行业科技项目,项目基金编号: 2022-ZD-018; 新疆交通设计院公司科研基金,基金编号: KY2022042501。

参考文献

- [1] 刘芳. 半刚性基层沥青路面裂缝处治技术研究[D]: [硕士学位论文]. 石家庄: 石家庄铁道大学, 2019.
- [2] 钟昆志, 许兵, 方正, 等. 破碎砾石水泥稳定基层收缩性能[J]. 东南大学学报(自然科学版), 2020, 50(4): 630-636.
- [3] 朱建华, 彭辉. 振动击实成型水泥稳定破碎砾石力学特性研究[J]. 筑路机械与施工机械化, 2020, 37(9): 10-14, 19.
- [4] 王鸿凯. 冻融循环作用下碳-聚丙烯混杂纤维混凝土力学性能及损伤研究[D]: [硕士学位论文]. 青岛: 中国石油大学(华东), 2022.
- [5] 韩龙, 张兆华, 李世军. 高寒地区水泥稳定碎石基层性能研究进展[J]. 青海交通科技, 2021, 33(5): 83-89.
- [6] 赵文硕. 季冻区水泥稳定煤矸石路面基层使用性能研究[D]: [硕士学位论文]. 长春: 吉林大学, 2024.
- [7] 刘标. 水泥稳定碎石材料的孔隙特性研究[D]: [硕士学位论文]. 武汉: 武汉科技大学, 2021.
- [8] 祁运佳. 低温施工对水泥稳定碎石力学性能影响研究[D]: [硕士学位论文]. 天津: 河北工业大学, 2019.
- [9] 闫志彬. 高寒高海拔地区水稳填充大粒径碎石基层材料性能研究[D]: [硕士学位论文]. 西安: 长安大学, 2023.
- [10] Yi, Y., Jiang, Y., Tian, T., Fan, J., Deng, C. and Xue, J. (2022) Mechanical-Strength-Growth Law and Predictive Model for Ultra-Large Size Cement-Stabilized Macadam Based on the Vertical Vibration Compaction Method. Construction and Building Materials, 324, Article ID: 126691. https://doi.org/10.1016/j.conbuildmat.2022.126691
- [11] 崔建卫. 超大粒径水稳破口砾石路面基层混合料改性与配比试验分析[D]: [硕士学位论文]. 邯郸: 河北工程大学, 2020.
- [12] 方圆. 基于振动成型的水泥稳定碎石混合料力学特性及细观结构分析[D]: [硕士学位论文]. 长春: 吉林大学, 2020.
- [13] 袁可佳, 蒋应军, 邓长清, 等. 水泥稳定破碎砾石垂直振动成型试验方法评价[J]. 大连理工大学学报, 2021, 61(3): 288-296.
- [14] 中华人民共和国住房和城乡建设部,国家市场监督管理总局. GB/T 50123-2019 土工试验方法标准[S]. 北京: 中国计划出版社, 2019.
- [15] 中华人民共和国交通运输部. JTG 3420-2020 公路工程水泥及水泥混凝土试验规程[S]. 北京: 人民交通出版社股份有限公司, 2020.