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Abstract
In heavy-haul railway track scenarios, complex background textures (e.g., ballast gravel interference),
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tiny defect targets (e.g., bolts and fasteners), and the difficulty of extracting crack features often
result in insufficient detection accuracy. To address these challenges, this paper proposes an im-
proved YOLOv8-based method for heavy-haul railway track defect detection. The original backbone
isreplaced with ConvNeXt V2, which leverages large-kernel convolutions and Global Response Nor-
malization (GRN) layers to significantly enhance multi-scale feature representation and long-range
dependency modeling, effectively suppressing complex background interference. Additionally,
Space-Frequency Selection Convolution (SFS-Conv) is introduced to replace selected standard con-
volutions, enabling joint spatial-frequency domain modeling and adaptive channel selection,
thereby markedly improving sensitivity to high-frequency crack textures and fine-grained fastener
structures. Experimental results on a track defect dataset comprising 3870 images demonstrate
that the improved model achieves an mAP@0.5 of 95.0%, with substantial gains in precision, recall,
and overall performance over the baseline YOLOv8. The proposed approach effectively mitigates
missed and false detections of bolt loss and rail cracks in complex environments, exhibiting strong
practical engineering value for heavy-haul railway maintenance.
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Figure 1. Overall network structure diagram
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Figure 2. SFS-Conv structure diagram
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Table 1. Comparative test data table
= 1. PR IR

B AP0 p g WAP mAP  BEE GFLOPs ¢
BiEGE TPEER EEEL R 05 05095 M) (@

YOLOVS 0.660 0.883 0.583 0.881 0.761 0.706 0.75 0.50 7.2 16.5 109
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Figure 3. Comparison chart of visualization results
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Figure 4. Graph showing changes in various indicators during the training process
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Figure 5. Graph showing the changes in precision and recall rates during the training process
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