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Abstract

To address the challenges of balancing real-time performance and detection accuracy, as well as
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insufficient adaptability in complex traffic intersection scenarios, this study proposes a weighted
comprehensive evaluation metric that integrates precision, recall, and detection frame rate. Based
on the VisDrone dataset, mainstream models from YOLOv5 to YOLOv10 are systematically evalu-
ated, and optimization strategies such as image clarity enhancement and mask application are an-
alyzed. Experimental results show that YOLOv10n achieves the highest comprehensive score of
150.41. Enhancing image resolution improves overall performance by 23.6%, which is significantly
more effective than simply increasing model complexity. This research provides an efficient and
adaptable technical solution for vehicle detection in intelligent transportation systems.
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1. 5]

A B VAR AR W 2 PR B 2 0 22 4 SR FHEAT BRI O, B SR R Al KA1 &
AR BT E S, B A FERG R S, JEERX ST, 5 S 80RR; BT
AR —TRAR PP AL VE R, A DU R A st bR FE SRR 1P . YOLO RAIBAY R 42 &4k it
W)z TS, AIE S YEREVEREA T T AEEA R (2] &R BRI inl B, A AR
W PEE R S5 At i =5 R, EHL YOLOVS £ YOLOvI0 5 L, $RHa Sk, A%
SR IR I AL 5 A PPN TR, IEFET VisDrone B35 5 2 S5 01-fik BG 77 0 E DLAL R .

2. YOLO 53! & 1 MEFR
2.1. YOLO &8 55

YOLO 4 H A far il 40 Ay B B el U 1) f, - Se30 1 i R o 2 i A U [3]. YOLO AL EE My an 1A 1 fr
7N, YOLO BRI i 22 RBERAE SR IUCE T P48 ) « RFAIE Rl 5 (39150 000 £ ) 30 S HE S0 (e D00 K ) P 2 A4 e o
TERGRE . SRS AR ) 2 IR HUAS RAF-PAT . RS AR BN SURM. SRy fis &2
71, BN AS I AR ARAG I A SRS 3 5 IR T R (4]

YOLO R AIREAAE SNy 3 Aner U ST A W2k [5]: YOLOv1 FE N E A S Bt il A A, B 4% SR
PEAR S, HELR BEAR . /N EARABUR . YOLOV2 78 R BEIENFY BE 5]\ Anchor #L#], YOLOv3 KH
FPN g5t et 17 2 REFIGEJ1[6], YOLOv4 5| NF§ 125G M 48 F 2 Msdis sl omBoR, i — PRt 1
PERE[7]. YOLOVS KA T Pytorch HEZE, FIF CSP-Net 45 A1E J B T- M4, H mAer ) () vk fff ek ok i
[8]. YOLOVG it 2405 e P IR B R IR, (HALIXSZRFESS . YOLOVT 5 YOLOVS fE 4k K fif A% 0 8
F) A b, @I 5l T 2 25 1 SRR B TE, FE R U AR R IS AT B b Sk — 2B 52 9] .
YOLOv9 Syt G i Bt A4 7 5 Fn ks 0 kS B2 AN B2 . YOLOV10 ik 7 B3 18 AfAs T R AT B
NMS (Non-Maximum Suppression, NMS) 5 4B, 225 [FRHMEM IR, EA R EMMNA[10]. YOLOvVI
LR H FRERER 5 E SO IR, SCREZAESZEE T YOLOVI2 51 ANESRYBUm & = /L], 35Xt
S H bR AR EE 7117,
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Figure 1. YOLO model architecture
Bl 1. YOLO 1521 %24

2.2. HEGRNIERR
PR P Al 5 B — AR RS B UE SR AT VR A, H RV BRI . R B
PERNZ ACRE TS5 7 TR RE[12]. BB I M RE A VP AL 1 B B SeRE P . T R AN B2 U T FE A5 DG B4R b R FT
Forb, S BEAHOCHRRR T T
1) /& (Precision, P): FBTEFTA # A IEREA R L H,  S2FR 8 IEFE AR (True Positive, TP) I LLH,
I ER]:cee s
P =TP/(TP+FP) (1)

2) HIE#R (Recall, R): fEFTH HSCIEFEA T, SR R AOEG], BIE 4. dabs TR
PRI AR, BV R AEAGHIN 21 B FLSE IEAEASH L1 o
R=TP/(TP+FN) )

3) “P¥JHEE (Average Precision, AP): Ron ARG - A R MZR(PR #£R) T rImAR, T
AN S — R 2R A D e

AP:J.o]p(r)dr 3)

4) FTAT Z AT 35K £ X35 {f (Mean Average Precision, mAP){E Ay H ARG AT 5 A% O [ FE AR > mAP 45
E VTS T BT A S A DI 1 RE -

5) SEEEAHDCTENR: KM (Frames Per Second, FPS)fi & LAY Suif A FLRE /) (M OCHEAR bR, FRoRiAY
BERD RES AL LI ER W E. BRak PR HERE T 75 (K% 208 5L (Floating Point Operations, FLOPs) Sz i A5 71
TR R R EATEAR, T PP YA A HE B R P 75 BT 07 e S8 . FLOPs ik, A7
TSR R, AR BRI 5 SR AR AU

6) WIHFEA KA S : SUEMBBEU T NAS R BHE, BRRRIMMNERE. W7E A
PAS B8 L - SRR, BRSBTS SR RIE R 7, (H RNt 75 B 2 A A7 ik 25 AL AN T S BT

2.3. ZERMIERR

LTI SRR YRR R s O BUS REHERE, SR A0 T b A LA 2 A SR R RR 2 R
TRl R IPbIR[12]. EARRGM A, BRI R 5 R 2 =000 oK sl AR i A (ol
RUIAIR HAr 455, DAROH R W LR St dbBERE . DUA VPG A RAATEH )RR : Bk, £ar
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BIRG R IS B 22 5, e DS SC B H AR A I 8 RE s FLIR, B Z XSGR 5 LA IR
TR EACHLI, kG AR AL 8 DR H R R R OB AR T TR IR & T30 Rt WJm, AREX BARAE S 500
K e S A B 2T RO 5L, A DU SRR A BUR 7 = R . R, R AR ) 2 H AR
P EARAL BT AL 5 B HESE
BT Bk, FERREE . A RIS AR B8R K, H FPS 5t HE S
R R 62, ZRE AT 0 R BV 22 . RS FE S 3 [l SR B AR B B DL AT e 28, AR T —
AL & Y- F8 PR (Weighted Composite Index, WCI).
WCI =(aP, + SR,)FPS )

Horb, o AREEERCERE, g NARRBERY, Ha+f=1. BUEREFR G E OB 50 SEPRFE K.
IS e RURS: H A (A P 24T 22 4 W] e 3 B50™ B 22 A i, A ml R NI T AMIR TR BE RIS 2 TR
ey AL 1 TR PR MR AR ID 25 038 vh A PR RE AT 0, AL T i fih 5 S8 RE S W SIEPR R 4824
Ko P, NFIMABCT SR L -

P =YwP 5)
RN B %
R, =YWR ©)

w,~ P RAEN ¢ WAL REFIREEE, v« R FAFIN ¢ BINE BB REAME HZ, N K
E‘iﬁ, ZN:wC =1, ‘ZV:VC =1,

IR Efetr B A Z 4R E e 7, B ERE R o 1 B, W DLRIGEERAS [ 5 M EAH
[ 26 E B 2 SR TR, A B w Ry B, BRAE I AN A SZAG DN H b B 22 % . FPS AE NSRBI N FE &,
B R S T R] SR T, AT e B A & AR A . RSO 2R A FR AR 5T 3 2 B AR vF
JrEAT R, e 1 iR

Table 1. Feature comparison of multi-objective evaluation methods

= 1. ZERTFN T ERERIEE

T T AR &K FPS EH Y
Fl-score + FPS JnAL Al b 4 55 BTN
Pareto HIVAZM T e mHEF 2 4 BERE R B (e —HET)
Cost-sensitive FE 5 FS AR Fe 2 17 L T REIR X b=
KRILERE R e 2 fie ERAL%EE . AR TR

FHECT F1-FPS NAUAN . Pareto HIW /3 #T46777%, WCT HA =J7 AR H: (1) i AU B/ 43 [7] % &
BB E N (2) MRS RIRETHRWER AR, REDEIFHLAW; 3) BESH o, pH LI
PR SC, TR 25 SR S A R 4 . WCT TG H] T L MR A MR e e 2k 42 1 5

3. IRGERE R
3.1. KIREE
A 5T I 5256 B FH ) PC BiC B 40 F : CPU Intel 19-9900KF- #:4F 2 4i 4 Windows10, it % X RTX3060Ti
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SR R T I AMRE, AR T VisDrone2019 HiR4E, ZERAEM 5 8629 Kt AWM
Bg, Hor 6471 sk TIlZR, 548 5k TI&AF, 1610 KA TMR[13]. BdifEmas ¥ 2 Mg 58 A in2k
B, AESE. ATE TN EWMMAATES K, RGN IE 2 s,

Table 2. Class distribution and weight coefficients for the weighted composite index in VisDrone2019
= 2. VisDrone2019 3 2 EC R INNLR S B E R

Y5 B/ i Ne Miotal We /e
0 (TN 79,937 0.23 0.2
1 A 27,057 0.079 0.01
2 HAT%E 10,477 0.031 0.02
3 RE 144,865 0.422 0.598
4 BE 24,950 0.073 0.073
5 £ 12,871 0.038 0.038
6 =R 4803 0.014 0.014
7 WA =54 3243 0.01 0.01
8 AHIRE 5926 0.017 0.017
9 EEFEF 29,642 0.086 0.02

3.2. ¥R E

VisDrone2019 ## £ 1 & 28 I K BOE AU B 1AL B PRI B, d7E— e R BRI 7 X

AR I FEMAFRFE, X AR AT T — AR 5, AT ks FE AN Bl e AL B R 3
e =Ve T nc/ntotal )

Hodn NG ¢ KEWKEE, n,,, WEEHRRWSEE. £ T A BATEMBEFEZEX 22 E520
FXTEUN,  Hl T X 28 BAREN, SO IS B2 AT B2 W ARAC, v 1 PRI L S 50 0 AR PPl 1) 5
Wi, 3E YR TAT AR INAL R B, MHELZ IR Sl R B Ve i s, HAHX T A TREMFR
ZEERBIRUN, BRI VIRZAER RS AN 2 R/ 8, RN RS (7). &ad B iasE, RAH
SE MR E AR PR R4 2 Fis .

TER B A AU, Onf T SC8E H AR A [l Z AR AT LUAS IS 52 50 B B 2 S IR AR IIAE — L5 5 TR
WX 4 b, BlaAT AR 70 AR E. REMREX S BT EMBEIEEMNX 5L R =5
R =2 FRX 34, BEiERa=04. =06,

3.3. [RIAREIXTEL IR

WM BT : FABUR PR 640 x 640, WIIEESIHEEN 0.01, SESHCH 0.937, HELEN
K724 0.0005, FEALRACER ) EUEEE N 16, B IIZOd LA 200 K. % T A SRS, B
SRREFERN A B AT BT T, AHSEI P 2 KR R B, R S S BT X S R /NI YOLO AR AR A AT
WA, IR IMBER G ARbR AT SR G VPl . 2D WA/ NI YRS B2 Py IBCP IR R L B
FoWiEL FPS. IALZE & 48AR wer WRREE 3% 3 Fis.

AT AR A YOLO11n (nano, n), I KMIBEAIZEK YOLO11s (small, s)» YOLOI1m (medium,
m). YOLOI111 (large, I)f1 YOLO11x (extra large, x) AL ZE G 46 45 737 FFE T 1.78%- 9.35%- 16.75%7F!1
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37.22%. EARIXLLREAY BRE FEANE [Bl A Frik S, (HSERHERKIE TR . S5S8EE/MI n fl s R
BUAHEE, YOLO11 #1 YOLO12 MUAR MIZREFRAREUIK, B2 MR T A J5 A #RI [A] . 5140, YOLO11n )
HEFRETE] N 2.9 ms, MG AR (A #0KE 5 mso 1M YOLOVIO RAKI &GS 18 E 0 kE, XEEAET
A RAE AN H IV 255 . YOLOVIOn FUHEERRS ()24 3.4 ms, JEAbHERFEICA 0.2 ms, SEBLT G4k
FRI () () SRR B, AT R ST T S M o 2R BT i B AR I SR A 5 A T T 1 R R AR
Ri: —J7TH, AR - RS AR R R SO B R E Rk s B — U T, B RR TR Skt
KA —E VLA SR MG, IR BR NMS JE A B, X Fh “254 - it ” Bea i, /e e ks m A B 1) [H
i S I A A ER

Table 3. Comprehensive evaluation results of multiple small-scale model variants

3. SRR NMERGE IR R

YOLO A4 P, R, FPS wcr
v5n 0.5537 0.5835 138.89 78.89
v8n 0.5738 0.5925 135.14 78.81
v10n 0.5717 0.5926 256.41 150.41
lin 0.5680 0.5907 121.95 70.93
12n 0.5864 0.5907 120.48 70.91
v5s 0.6523 0.6163 108.7 68.94
v8s 0.6641 0.6201 109.89 70.56
v10s 0.6390 0.6274 232.56 147.25
11s 0.6522 0.6301 108.7 69.67
12s 0.6629 0.6347 114.94 74.58
11m 0.7167 0.6581 94.34 64.30

111 0.7300 0.6636 84.75 59.05
1x 0.7464 0.6696 62.89 4453

3.4. /pEFREMLALRIR

FER MRS N, R4 B ARE s OO IR D BE R, REUN B AR Bk, I B4R THR
Krge . (EESRARV R B AR RE T, TSR IR FE I R B, 7E3G SRR A Al & S5O0 A T 7 T S B AL 1
WHESHEMEREEE EA(14]. TR 158K G 1) P3~P5 &2 5008 P2~P4, H 1 P2 JZREGSHH
RBEERUG R LA, IS HARE) AP (HIEF T 15.9%. SCHR[16 T #E  HF R E g, 2 HBCREL
BN S PR B S HAKSE T HARE R A, B HERRERE RS 4 55, /NHRR AP 2
F+T 25.5%.

T ERAF R, ACHESAEIN S A P2~P4 ] YOLO11n #4717, I [FES % YOLOv10n A1
YOLOI1 1n #H4T T 43 ¥R B1£(1280 x 1280) 4 N IR t T 58 R A7 2 [0 A R, B bR KN EE N 4,
M HAR A S EAORFEAAE . /N H bk il o w2 4 B

YOLO11nP234: %A 5T YOLO1 1n, @i #IBR PS fill 23300 P2 Al EdE T fifk. T P2 2
LTRSS PS I 16 1%, EINRSFEA G B2 prieft, A 0ENE T 23.36%, SFEHALEGHE
FT YOLO111. 1101280 1 10n1280 #:%! YOLO11n F1 YOLOV10n ¥ A & 4> 95 M 640 x 640 42
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FHZ 1280 x 1280 AT &5 R EIR, IXFh o HER 5T AR R TAE I Sk R 8, Aok 1 B RN B35 R
BTl HHEE S A R h & (m SO, {5 FPS 54 &fatnty AL,

Table 4. Test data for small object detection
= 4. BRI 29

YOLO A4 P, R, FPS wCI
11nP234 0.5418 0.6254 93.46 54.54
11n1280 0.7185 0.6954 105.3 74.42
10n1280 0.7053 0.6941 181.8 127.02

4. LRIE

AHE TR TR GRS« A [ A R (0 2 4B VP 14 &, JF B PU AL MR AL B AR 5 B8 e A,
PR T — FhERS 55 R Z 1R ST R 87 A 2 AU Ak phe 0 58 o 30 3 SRS 1k 52 T PR R it B DA B AT
FaE R, ARECT AT I R L, RERS IR TE R SEER MBI VERESR T SRTI, W TTSZER T
I RAAE . BER T 6 LA RR TR RRTEERETHEZ S RGEMELRE. JTRD
G AR E S, IR 2B Rl SRS DR T I PR T T B e Tl M

HEemE
JH G TR EIR T 08T S E R R I H SDGP370600000202302000504
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