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Abstract

The natural gas network planning problem presents significant challenges, primarily characterized
by its Mixed-Integer Nonlinear Programming (MINLP) nature. This complexity stems from intricate
network topology, nonlinear physical conservation relationships, and the discrete decisions in-
volved in pipeline construction and equipment selection. This paper addresses the MINLP model by
employing a Piecewise Linearization technique to reformulate it into a solvable Mixed-Integer Lin-
ear Programming (MILP) model. To accelerate the solution efficiency of the resulting MILP model,
we conduct an in-depth analysis of the pipeline network’s special topological structure and flow
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conservation properties. Based on this analysis, we propose a strengthened valid inequality (i.e., ac-
celerating cutting plane). The inequality is demonstrated to be effectively applicable to MILP models
for pipeline network planning under general topological structures. Numerical results confirm that
the proposed inequality significantly tightens the linear relaxation bound of the model, consequently
effectively reducing the MILP solution time.
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33. BUTFAHES
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ijeE’
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M AATAT R RIEATE A R).
T ELF IR AL all _req, maxflow, E'[FSEFRE . R E B, EEAEARR
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B 1 R ia BRI AN T RSSO A TE T, BB AN T RN AN B KA . B A
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Figure 1. Initial Network
E 1 RiEmL

Figure 2. MCMF Network
E 2. hERHEARME

E 2 et i R &t nid, JFHdEd sk aR 0l TRm . b g el Rondid it .
Guit K, HETRIMZ R KEHEe /18 12, FoRonEl maxflow =12 . R ER#d, & ETsoT
THEUES E fIE: E Rl MCMF Sk E M BTHa A s a, minfhn &R AL
4. MRS KRA D, EME, JFHARERRN D, EFUNES. dike] DI RI7EHoREIH E' R
/NN BD, BE, CE WS . £5 LATR, TEAHMAR T i dEmR A G I & IS4, WA RS
Ko BB AL INE] MILP A5 ch ] DL e 750K A o

3.4. TEHAR
A SO RS p 5 8RR b R B M BT AR AT 55 SCR M4 1R .

Table 1. Variables Description
1. TEUAX

BES D
e b
EEN SRR EREITE Sy
EENSERERUE ey
MBI, TeV
WANEFRA L jev
BN BSL s e{1,2,3,4)

Aij sy, BUEH s BUE

}Eﬁﬂ

O ——_-—m <O

£
=

L i ij KHE, 1000~2000 A fAIBEALE
c W B AR T R

P ARMETHERL 0< p <1 BEHLIL

b, TG R b <0, FRED >0
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z; 0-1 7428, i x; BUEIX[A]

7 0-1 748k, YU y; WUEX [

a’ AN R B X 18] g A

a; 0-174F5, MW 1FRRHAMIi-> j

B, 0-1 28k, M1 FRHFA j->i

m Ir BRI 7y B, R 2

e" 73 B I ABh R e B R

£ 73 B I ABh R e bR AR

ty 0-174¢%, e y; HIHUE X 1)

Vi Iy BRI B R BRI A R, SRR
I, 3 B X T8 ) 72 3 1,

I 3 B DX 17 [ 45 S 25

E' BRAFEX DL

all _req RFERE
maxflow JER 45 P 2% B K 1 i e

4, ¥IESCIE

A YHMESLIGAE Windows 11 #:/E RGN T, AE(FACE v CPU R5-3550H FI 16 GB RAM. &
IR Python 3.10 4 f2iE &, JF4i4 Pulp FERIEE MILP fAL . REALSK A 1 SCIP(9.1.0) 58 K. LBt B
TEXT EE BRI 5t R ITHROR s SRR (AN NG 284 25 30) 5 9 A B2 (8 I A ST I 38N )
I LR R B BT (1 SR AR AN (] ASGHIE BT 42 H (0 A 80 5 AR IIss MILP SR A D7 T (A 25k

4.1 MABAE

BEALAE K 50, 60, 70, 80, 90 FirifMZs¥ri4hAl, WHCHTT SN 3 fF. BERIT SO ST
1/10, 7F3RT AUEAE T A5 EU1 3/10~8/10 1], FIAR T s -] A PRUE LR A IR AR B K T 8 7R R
s PRUE SR AR RAALIN 48 1) B R/ T8 75 SR i BT s AR AR B 20 2R 25040 - 4 B i B AE 100, 150,
200, 43 HMBL[100, 150]. [150, 200]#k47 £ Eim L. & %X%Mo1£iﬁﬁwﬁkaAm$m
1 AR EE RO il R AR KR RS I AR R ﬁTﬂﬂ%ﬂﬁm%%¢ 0-1 A% B i fpe £ 1T LAJE ok 4 5 25 ]
SEAEHFR, I, JEERAE L0 45 St 5 s R bR RS2 a0 20 1 .

4.2. HESR

2 I T AP ZEHUARE T BEAERR CRESINANSE 20) 5 SR AR TR (I AR SCER e 1A R0 3 32K 1 229
SRAFI AR EE o Ferfr, 55 i B CRBEATLAE I 28 1 (K1 B 8. BB SRIR 4 R W], A SR KA 2L
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AEEFRENE B IETT MILP BRI FSRARRCR . AEFT AT T, SRR )~ B SRR I 1) 220 (IR T 2 1
B, Rp s, AR RS 50 AT BLR , SRARIN (5] 4 R 8 R e o 25, SRARIN AL AN 172 M %2 133
Fb, I L 22.7% (BRI SR AR (8] ARSI R A6 1) 77.3%) . BRI, %A AR LEA [F) X 28 B T %
TBIR AR A1 4 3.8% 2 22.7%. XA JIHEN] 1 iz AN REW A ROM SR Y R 2 M hn s 5, AT 8
I AR AN ST R MILP AR R SR I A

Table 2. Average solution times (Unit: seconds)

% 2. PHKMBATER(EBL: )

AR 50 60 70 80 90

FEMER Y 172 292 285 401 738

R A AR AR 133 281 270 341 656
5. &t

ASCIEEET RN W RIIX — B A PR A PR SR 0], 2% 1] i 8 B 2R (1R & B R R e
KA, O P 32 YR T AR LR R (1 A R S 1E 5C R A B R PSR G i Rk ik S i) o AR SC B
AR W ELRIT MINLP #5278, ASCRRIIN 1 7 Bt U Bl (Piecewise Linearization) A, KL &%
A R E R HIOR RS AL B TR B B R I R RIS R o X — B SR D S IR RIS A T T AT Y
RIFEEAE . v IR I U Y T BEAZTE M LR PR Tt B 55 « SRF AR I, ARSTRN BT T8 M
MRER AN S M AN S S AR, R T RS T sk i O S (B D T, S30A A 8N4
KM, ASCRB A BASER T 4G T RTINS R, BEImEAA . B RE
JIHIE B 1 2003 B S T PG 280 o 38 I ] L A R (AR W AN 5 5X0) R S A ASE B (R AN 55 5X0) (19 P 3 5K
fRIta], S5 REIR, Frit A AR S B ISR A (L M Aa st R, AT RAAE A MILP B ) R
I} A o AEA YR SZIR B b, KRR A] i 22 W] 4596 22.7%, EW] T TR AN e SR THE W1 SR AR 25 7 T
PIME -

gi b, ARSCHITEECRUE RIS BE U RTER T, SO T RAR S BRI ) R SR R R, e
PRI AR ER R T A TR T .
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