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Abstract

In algebraic graph theory, polynomial transformations of adjacency matrices provide an important
tool for characterizing the relationship between graph eigenspaces and symmetry. This paper in-
vestigates the problem of preserving graph adjacency when the adjacency matrix of a simple undi-
rected graph undergoes specific polynomial transformations of degree 3 or lower, and systemati-
cally characterizes the classes of graphs satisfying this property. Through the classification and
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discussion of quadratic and cubic polynomials, the necessary conditions for the adjacency matrix to
still correspond to an adjacency matrix after polynomial transformation are given, proving that it
must be a regular graph and contain no specific cycles as subgraphs. On this basis, the generalized
Petersen graph P(n,k) is analyzed, and the parameter constraints for preserving the adjacency

matrix property under a class of cubic polynomial transformations are determined. Furthermore,
this paper characterizes graphs that remain isomorphim before and after polynomial x° -k trans-
formation, proving that the only graphs satisfying the above conditions are odd cycles. Finally, two
special types of graphs, the Petersen graph P (5,2) and trees W, are discussed, and two cubic

polynomials are found such that their adjacency matrices still correspond to some graph after
transformation.
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1. 5|15

EHSTE NS BB E BB 3, ERNE 2 RGN TS E R DL R A6 6 07 T R Y55
HEMEH . BTETHENL @ DL RESAT e 7 sA7 0, o LI R B AR 0 R,y A e
R ESE . [ M O ARBURRIE A B S M AR ST 3R 4 T 3G I F B T —/ M m &, 4R
FRHE R S T P A TR TR AR ARG R o B I AP T AT AR B AR T, T DK T A B ) PRl 5 1]
FEALONSERE A HT IR, M BIAE RS . RS P RIS LR P06 T B, AR BRI IE M. %R
PERREARGERRFAE . X el “B” B “HERE” B, RABENRT OB Z —[1] [2].

TEMCHFCR, — AN EA PR 0 1) BT 52 30 0GR 2t B AR B AE B i Bz 5, IR
AT, FTH REAEAT 4 2% NIRRT B RIS RE 2 it — Db, WS 2 AR 4 i ) AT 40
BEAANAETE X o 2P, i EL R 2 P D B T T R % PR A b 22 TR e A SRRk
X ) AR T X B M AR I, oviB AR EOTT RAR G A O PR At T B A

ML F SR, AREE b e e 2 A AR e 2 A B EENE . RS s, mARAY
O IR, AR 2 T T R R I RIAR AR ST [3]: TEM L, 2 % AU AR B AR R
B2 T RS BAR IR 580 )10 72, X2 R 4 R G BT A B 2 X [4]: BEAk,
EEEE 5 A E 1, 2 OECEIER S EAZO TR, ¥ TES P B8 omr A, HEikE
it 1F 2 P B 1) 22 T F[5]

MERIRAIETE ) BEG, AR [ 22 T A8 e ) @ i 5. H Beezer R4u42 H IF0F 5T, Beezer 58 &% H |
P8 1% B AR B E MR AE 2 T AR F S AR ORFFANEE R R AT 2 a0, 5 SR i B4 e 1 3Eati[6]. BEJS,
Weichsel #fix —EAHHE 25 — I EE, $8H7E 2 iR e T IR 1 45 40 1) B AR A 5 E 3 1 I 1 )
FHIR[7]. Fonseca 2 Nilk— b5t 7 BB S A B2 R 2 TR, @5l AU E R2 0, BIahiE
N T BERE MR S 2 IR R 2 AR R [8].

BT HIRN,  ZE AT UR A — MR A Eis S5 A FE i R R B R I . — D7 T, A%
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51 ABESEFESRARINS B B BT, 2 1 AR R SRR SO R B SS9 5 — T,
A TAE NFERERT 7> R M BE A, F TR [ T DA 7R D H At B SR BEAE B 3R A, T4 fie 17 B AR
FORMBEIBHEZL[10]. FE[11]F, WEIT 75 EAHSCIER AR FE (SR AR T RE SEELIK I o [12]8F 7T 1 B AR
RBTEPE T, AR IEMTE. P RO YE . IR, MW EE— 2 5% B A A 2 2% R i 2
WA TRAREER, RO HUBT R R H 2] [13].

FE ERBT SN b, ARSCHETT 7 AR K 2 A e i j, AR G TEAE — 4 = ORI = I 2 A
RN, WO B ) SRR K TS SR DR RF SRR M A AL B . S BT FUMIEL, AR SOOI 2 T 4%
FEREIX —FE I, St PR T 2 AT R B S R, JEH R MR R, e A3
e 5 B S DRt TR ST EAG AR R AR

AEERHLINT 5 m PN T ARG S AR RIS, B TR BRI
]S AR, NS iR IS B HESE . B = TR e AN MR 2 AR R T R SEHE
MR Z IR ZIANTF, 25 2 E 45 22 0 AR e 5 10 AR R0 ) 0 B2 2, 49 380 P 0 20306 A2 1 U
PEUL R AE =l DU RESE AR PR o HE— P, RSO SRS AREHET T E Ao, Mgt 734
FAF, IR T 2 BRSO H R B A5 S BRI IS . FERLIER B, ASCGERTTE 1 2 WA el
Ja B RFFRIRI RIS T » I B A A BR 0 B S (n 7 P ) REAS T 23X — 2%, TR 7 2 0GR
KA R EERI A BORIR . fea, W8 7 PIRERIRI, BUERRIEA, BN =R 2T, (551%
PR ) 41 FEHE B AE 22 A R 7550 AN B 4B HEHE RS, AR AT BR 70 28 5 JE PRAE B 1B 1 T R AX
O A

2. &R

KA TR . B’ G =(V(G),E(G)) A, KAV (G)={L2,n}, A
E(G)={e.&, .6, V(G) HHAEZMWATAIL ), #ijeE(G) WL Ai~j. G K 4FHEMRE
AG)=(a;) —~ (EARSIEE T AG) LN A)R—ARFk (01) EFE, Hrba =13i~j: HMK
a;=0. X Vi, jeV(G), MiZFljlBMKEEMBEIR NI F j EREE, FARKEE OB j miES, idfF
d(i,j). KEG P EIAT BT oRERR) L K H ARV AT BB, id v deg(i) - # &1 G B Tl B2 #0451
k(0<k<n-1), JWFKG Ak IENE. g AT HEK—L5E Lo

EX 21 WEGHMEH, RV (H)cV(G)HE(H)cE(G), MKHZGH—1"FHE, il
HcG.

R 22 TN AARE P(nNK) R A EH 2 AT 3 I, T
V(G)={X\ XXy Yar Vorr o Yo} » B E(G) = {XX 0, X Vi, ViViui ) » HeHie{1,2,--,n}, FAr¥IE4T modn i
5.

B 23 %G =(V,E) G, =(V,,E,) 2FANE, WRAE—DIUHRE TV, >V, , [y,
ERBEA R, ijeE,MAMNY (i) f(j)eE, WKG 56, FH, 1EfEG =G,.

SEN 2.4 X T NEEMERTFEG = (V,E) » HEARE PR M AN T 2 8] PR ES 1 5 K fE . id

?ydiam(G):Tvg(d(u,v) .

BAR—DnxnJ7BE, f(x)RAE—ZTR, LN A5 f(A)RRAEE SR AE &2 (W KRR .

B 2.5 ¥ A2 nxn FEFE A IO AMRFIERE, OO RIRFE R B, MIXHMER 2T £ (X)), ()
WA (A NREE, HXS SRR R AR 2 v

E: A=AV, A= . & f(x)=aXx"+a X" +-+aXx+a,, N

|
X
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f(A)v=a,Av+a A"+ +aAv+alv
=a,A"V+a, A" V4 +aAv+ay
=(a, 2"+, A" A ag v
=f(A)v
WA L .
3. $PIEIERER BTN TR

Beeze 7E[7]THfisE T T 2 T ¢ (x) » (AR EEARARE A(R, ) A Z T ¢ (x) FIAAE R 25
NI ABERIRE . Fonseca [9]58 #1745 [l A HEAEME A(C, ) AN FRIRFIE 22 300 b B A8 O B o ARG
AV H B E LT f(x)=ax+b, x> +bx+c, FIEMLLE G, MFHAEMRE AW f(A) TIREA
I B (K AR R

i) f(x)=ax+bo

KA £ (A)=aA+bl 75— EXAL TR AN 0 PBIXFRI (0,1) FEFE, #a=1b=0. Bl f(x)=x.

i) f(x)=x*+bx+c. F=FlENiL:

1) ¢=0, BIf(x)=x*+bx.

LI f (A)= A’ +bA . f(A) T DIXTMLITTEN f(A), = Al +bA =deg(i) - XI TAEEARZH,
BRI b BUTE,  f (A) EXTALRICRIAAN 0, Bl f (A) ASATRE R — 1] 80 T ) A B

2) b=0, B f(x)=x*+c.

BB £ (A)=A%+cl o f(A)RIZET DNEXALITTE f(A), = Al +c=deg(i)+c. # f(A) TR
B, W f(A), =0, Blc=-deg(i)-

3) b=0Hc=0, Bl f(x)=x*+bx+c.

BEIS f(A)=A?+bA+cl . f(A)IIEXMEITEK f(A), = Al +bA +c=0, Hlc=—deg(i). XA
HotE (A), = A +bA - B0 A, WA A =1, HRab=1-A%. 3, jAHH4E, A f(A), = Af<1,
HoHUEL K. &L, b=1-A Hc=—deg(i) i, f(A)XRAEHHE.

T THIE 2).

SEH 3.1 WG R nB R EAGEAE A, 42T (x)=x2 -k, 7 (A) IR REAKE

H EOARBEAERE, WG A% C, i TEIM k[ogsr*— V‘z‘”‘3D ERE, H T (A) BRI H

k(k —1) .

WEH: BN f(A)= A=kl , —J7ii, f(A)RIEXNALITR f(A), = Al —k=deg(i)-k=0, tulit
XtvieV(G), deg(i)=k, #G Ik EME. 5—J5i, f(A), =AfZmMIA HASITIN j £ iEK
2 B AR (walk) B, WA, | Z 1A, ICHBCA N (I, ) o & f(A) 7005 RESEA B 48R
WIN(,j)=1800. K G & CIEATE, ML jeV(G), MMAN(, )22, 5 f(A)2EEHEMET
JEo FTUAG @&AE CAE AT k TENE.

TR f(A) IO RITE H AR — T .

H AR P AL JHARSEN T £ (A), = Af =1, AR £ (A), = Af =12 AU G AT i )
W, j 20 BAUCE — 2K 2 BEAe, WIETH SR — T i S T 18 G s ST 2 A — 2%
SR 2 MERAR TR AN OSEIG 2 K IEME, Bl VieV (G), fAdeg(i)=k . ST FHEA 1#)
RA KA, TANE kAR ERE ST HELSE, 85 HA k-1 G AE, FrUlE G 5T RN 2
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B K (k—1) A BRRZEE H b, T 5 k(k—1) A AL, BFEAE H Ak (k—1) EEE, 540

H ST A R ok An -1, fibhk(k-1)<n-1, ﬁﬁf%sk{“— V‘Z‘HJ REE T

MR LIRE R, R IBATX k BURRERAE, T LIS | (A) VARG

Mk=12 0, WAFLE THE LR f(x)=x> -k, H f(A)750F A B A5 B R 1 T B

k=11F, BG y5e3clLhL.

f(A)=A* -1, —J5iil, f(A)MEXNMLITR f(A), =A -1=deg(i)-1=0, FrLlvieV(G),
deg(i)=1. % — 77, ERICEPAABN A ZWEAALLA, F(AMEENALTR
f(A), =A =N(i,j)=0. FiLLf(A)=0, f(A)FREIE NERA.

k=2, EGHNAE C,IAMALIERIIF

f(A)=A* =21, —J7ii, f(A)BIEXNMLTEK f(A), =Al —2=deg(i)-2=0, FrlAvieV(G),
deg(i)=2. 575, f(A)MEAEEMMLATLE f(A), =Al. f(A), =1HHMYI, jZRAFERD 2 [
BiE, S, f(A),=0. VieV(G), ST HEN 2 MaGBOCAPA, FIELf(A) IR 2 1
U, BEANAZ ) 3

k=3, AT UHEARE P(n k), Eoegth P(n k) B 4 BIEAT B &L

BB 3.2 5] MWAFHRE P (n,k) & CEATEL, Minkilig: n=4ksik=1.

UERA: Sl X, i€ {12, n} FHETECHN X, By, ie{l,2,n} FHBTEILAY .

TS P(n,k) & C, E T BRI B

) C,BETX. ¥eV(G): xy~X%~xX,, HPTREHATHENIEH. 7B X In ATRKE-.
prble

C,cX e n=4,

i) C,EBETY o WeV(G) s Vi~ Viu~ Vi ~ Vieae = Vieax » S THREEATEn 2 H . 3
Yieac = Vi (modn) B, Y FHBIC,
C,cY @ n=4k,
ST Y A KRR, D IER T y, BFEHA 3, EﬁllskstnT_lJo
i) V(C,)NV(X)#B HV(C,)NV(Y)#D.
ATREAEB T SN X ~ X1 ~ Yia ~ Yiak ™ Xoak T ~ X1 = Vier = Vi = Xk 0 S5 FARIEIHEATI n iz

o M %, =% (modn), Bk =18}, EIHFEEC, . ffﬁ‘éﬁlsks{nT_lJ I, AAFEAE K AEAR X0 = X (modn) .

[l
C4gP(n,k)<:>k:10

ik, Hn=4k 8B k=18, P(nk)%&CMENTHE.

SEFE 3.3 W UBAFRE P(n, k), ABHAERE N A SEZ T f (X)=x" -3, & f(A) TR RIIHEAE
MIAREEAERE, WinkifE: nz2k, n=dk Hk=1.

UEH: e 3.0 1%, HE I f(x)=x" -k i1 f (A) NAHEERE, NEG EAE C MENTEIMK
ENE, FEibtk=3, P(nk)*A3ENAE.

An=2kIF, X~y ~ YV Hx~y~y. By, =yi+k(m0dn)’ TRy, ERIRN 2, SP(n,k)
H 3 IEMEFE. Arbin=2k .
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HEEE 3.2 W1, Xn=4k 8Bk =18, P(n k)& CMENTE, #n=dk, k=1,

gik, (AR ERAHER R, An=2k, n=d4k Hk=1.

NHPETETE 3).

SEHL 3.4 B GRAREIHMEREN A, HELZT f(X)=x*+x—k, & f(A)TIAREADEIR
SBHHRE, WG RAE C, A C, 1 k IEN .

WEH: B f(A)= A+ A—KI TR EIMAREAERE, £ (A) AT MALITRIN 0 xR (0,1) 4
Beo —J5m, f(A) TN MALETE f(A), =A +A —k=deg(i)—k=0, Frtldeg(i)=k, RIG Ak EN
B 55— 7, f(A) KRR LT R f(A), = A+ A {01}, &1, j AT WA A =1, FALE A =0,
WAL, | ZIAAER 2 B4, BTG AE CIE AT 4, j AESE, W A =0, B4 A <1,
B G A C fENTE.

gik, A7 F(A) R MABEAERE, WK G R&AE CFIC, ik EME.

THBEAHFR T L2 TR (%)= x> -k BHIFL ] 55 K [F R, 453 R e .

SEHL 35 WG n AR RE, BN A, 2T f(x)=x"—k, & f(A) PR EH
FtTEG, MEG Rugdark.

EHH: 5 f(A) 52 4BHHERE, WE G RASC, Mk IENE . e 3.1/ a: f(A)Fxd & H
e k(k-1) IENWE. FAH FRHET G, HIENEME, #ik(k-1)=k, k=2, FrLlE G HfgR C,
BN Bl O

ME G AR, BIn=2k+10, BAged(2,2k+1)=1, 2 &2, MAERTE, HALER Z,,, 31
FiEiE, FTUVERMEH 2 —NE, HEETG.

ME G MEER, BIn=2k i, FAged(2,2k)=2, 2472, WEKT, RAEARZ,, F ik ME
Hotxk. MERBTUST R, 51 G EEHEFER SR —NE, SH ZPDNAEZERIE 56 AFEM.

PATRBEf(x) =7 +bx? +ox+d , FRATG T SRRRIE : DGR P(5,2) AR W, £81% 2 AL A7)
N Ti] B PRI AR B ) — N SR

SEEL 3.6 ¥ AAFARIE P(5,2) (WIS 1)IA0EHERE, f(X):%(x3+X2—5x—3), £ (A)T5RHA 6

I U P R SR R B

Figure 1. Petersen graph P(5,2)
B 1 #187E P(5,2)

|
X

[
3
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WE: R f(A)= 3(A3+A2 5A-31).—Jil, f(A)MEMMLITE f(A), = (A,+A,, 5A,-3) .
Horp AR ZERI P(5,2) HIAEE, A FORLLT TR =MIEMEE 10 2 65, BUYE P(5,2) AL
S BOE A =0, BEA T (A), =2(deg(i)-3)=0.

S—drm, f(A) A EXN &L R f(A)ijzé(A?+A,§—5Aj)o oM 1 75 A% B P(5,2) I B4R
diam(G)=2. FHAAEd(i, j) 5 2Kitik:

i) d(i,j)=1, LH:HﬂLf(A)ij:%(A?+A]?—5Aj) [(deg (i)+deg(j)-1)-5]=0.

i) d(i,j)=2, B AMEEREP @Q¢EE%ATW$mﬁﬁﬁﬁ AAFEAR S, B

f(A)ijzg(A?+AJ SAJ) (2+1) 1.
PRt A9 2R P(5,2) A9 3 TENUEE, 1), i),
f(A)=10-3-1=6

HEE(A) A 6 T B AT B

Rk, BAT-AZRZIR S (X), EATETT M EW, BB A 22122 Bl 22 fu s R A
FEI AR £ (A)

SEH 3.7 BW, (n>6) MK P, , EH T AL 2,n—3 73BN B £ n -1, n AR B FIRT (LIE] 2) Fe4la
FERER AL (x)=x"=3x, T f(A) S5 RiREA I AR HE Rl o

n—1

1 n—2

Figure 2. A class of infinite trees W, with spectral radius 2

Bl 2. —KEFER2HTHERW,

WEH: f(A)=A*-3A, —J5i, f(A)IEXMLILE f(A), =A -3A, VieV(G), A =0, A
FornEW, LTI I = AT IR R 2 4%, BOIW, i, AN =i, @& f(A), =0.
5, f(A)ARERLITE (A), = A -3A . BN diam(G)=n-3, AT ¥ n>6
i, S, j 2 IAREEES d (i, j) 2 =20
) d(i,j):l, ﬂ:tlﬁ-f(A)ij:A?_BAj:A?_3E{O,1}o EVi,jeV(G),
#f(A), =0, A=3, f3Vi jeV(G), deg(i)+deg(j)-1=3, EP
deg(i)+deg(j)=4
#f(A),=1, Aj=4, 13Vi jeV(G), deg(i)+deg(j)-1=4, K
deg(i)+deg(j)=5
Hed(i, j)=1,
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f(A). - 0, deg(i)+deg(j)=4
" |1 deg(i)+deg(j)=5

i) d(i,j)=2, ULI f(A), = A -3A=0.
i) d(i,§)=3. BT (A), = AL-3A =1.

iv) 3<d(i,j)<n-3, BLAf f(A) =A -3A =0

FRbiin>6Hf, Wi~ j, #474<deg(i)+deg(j)<5 M. FHM, Hn=6Hf, FijeV(G), f

deg(i)+deg(j)=6<>deg(i)+deg(j)-1=5< A’ =5 f(A) =2

ij
5 (A) NEARESERE T G, € BARIE
N T T W, 36 IE 2 B 3.7,
M 3.1 '&Wg ()]_Ll» 3)5‘]@5%%@[@?‘3 A, f (X): X3 —3x , I)_I\[J f (A) Xﬂ—@%ﬁ\@mégﬁ%ﬁﬁio

7 8

1 6

Figure 3. Trees W, with 8 vertices and spectral radius 2
& 3.8 N ERYiEREE N 2 IR W,

AW, FOATBHERE A AR £ (x) b, 13 1 (A) 4T F

01 00O0O0O0OD0O 00010000
10100010 00101000
01010000 01 0001001
00101000 10001010
A= . f(A)=
00010101 01010000
000O01O0O00 00100O0O00
01 00O0O0O0TO 0 00100O0O00
0 00O01O0O00O 0 0100O0O00D0O

4. &EiE

2t PG B8 SRR MR I RHIE (L G ) o AT I IR ) T R R AR B, s I SRR RN 22 T T 45
FEREAT BRI B o X ELHAR TU IR M 45 5 AR R I RBCRIR 2 B e A B I &R - IR — N G
EAZ G (A) BRI E B 5 (AR E) AR, X878 1 G MRt ——E a2 1%
RIS, DRI TR EThs S . FHREA XM ESE, ZONE a2 5208 1735
o IR, TESCBRR A, MR B R GEe R AU, AL TR I TR, 58t
WEFCAT LAV T ), SR — B2 kA e, i AR T 2 A e, Blinmt e iy s s, mgedl,
s TR TN SRR A e 1) AR B SR R SRR R, dn B RO R R R L, BRESRERESE,
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