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Abstract 
In this paper, the finite time stability and synchronization control of fractional order chaotic sys-
tems are studied; based on the Lyapunov fractional stability theory, the determination method of 
finite time stability for a class of nonlinear fractional chaotic systems is proposed, and it’s more 
generic than the existing results. And the synchronous controller is designed by the method; in the 
case of all the variables are met in the system, the different structure of the driver system and the 
response system are synchronized. Numerical simulation results demonstrate the effectiveness of 
the proposed method. 
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摘  要 

本文研究了分数阶混沌系统有限时间稳定性及其同步控制，并基于Lyapunov分数阶稳定性理论提出了针
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对一类非线性分数阶混沌系统有限时间稳定的判定方法，与现有的结果相比其更具有一般性；并应用该

方法设计了同步控制器，在满足系统所有变量有界的情况下实现了驱动系统和响应系统的异结构有限时

间同步。数值仿真结果进一步验证了该方法的有效性。 
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1. 引言 

随着分数阶微积分理论的不断成熟，分数阶混沌系统稳定性研究得到了国内外广大学者的关注。许

多物理学过程都展现出分数阶动力行为，研究表明用分数阶建模可以更好的描述实际的物理现象[1] [2] [3] 
[4]。混沌同步由于在通信领域的广泛应用得到了很快的发展，人们相继提出了很多种整数阶混沌系统的

同步方法，如滑模变结构控制法、自适应控制法、模糊控制法、脉冲控制法和 Backstepping 控制法等，

并进一步推广到了分数阶混动系统[5]-[13]。但是，这些方法只是对系统稳定或渐近稳定进行了研究[14] 
[15] [16]。然而，在实际应用当中，更多的时候是要求闭环系统能够在有限时间内稳定，因此更需要关注

系统的有限时间控制。另外，在设计有限时间稳定控制器时，都会存在复杂的分数幂项，这让闭环系统

具有了更好的鲁棒性和抗干扰性。 
针对分数阶混沌系统有限时间稳定，赵灵冬等利用分数阶微积分理论得到了一个分数阶混沌系统有

限时间稳定的定理，并实现了分数阶超混沌 Lorenz 系统有限时间稳定[17]。赵建利等研究了洛伦兹–哈

肯激光混沌系统有限时间稳定的主动控制方法，给出了整数阶混沌系统近似有限时间稳定的一个充分条

件[18]。Jun Shen 研究了非线性分数阶系统在有限时间内不存在稳定点的问题，推动了非线性系统有限时

间稳定性理论的发展[19]。在非线性系统有限时间稳定理论中，陈国培等通过函数构造和变量替换给出了

新的非线性系统有限时间稳定的充分条件[20]，具有很强的应用性，但是只是针对整数阶非线性系统，对

于分数阶非线性系统有限时间稳定性理论的研究还尚未深入。 
本文首先针对分数阶混沌系统，在原有的有限时间稳定理论的基础上，通过构造一个非负不减少连

续函数，削弱了系统 Lyapunov 函数非负不增加的条件(允许在某些时间区间上出现单调增加的情况)，其

次利用新提出的方法设计了同步控制器，实现了驱动系统和响应系统的同步，最后通过仿真实验，验证

了该方法和控制器的有效性。 

2. 分数阶微积分 

分数阶微积分概念提出了很多种定义，文中采用 Caputo 定义作为研究工具。 
分数阶积分定义为 

( ) ( ) ( ) ( )
0

1

0

1 d .
t

t tI f x t fαα τ τ τ
α

−= −
Γ ∫                             (1) 

Caputo 分数阶微分定义为 
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∫
                  (2) 

其中， ( )Γ ⋅ 为 Gamma 函数。 
当 0 1α< < 时，Caputo 分数阶微分的解等价于 

( ) ( ) ( ) ( ) ( )1
00

10 d .
t C

tf t f t D fα ατ τ τ
α

−= + −
Γ ∫                        (3) 

定义 1. 双参数 Mittag-Leffler 函数定义为 

( ) ( ),
0

.
k

k

zE z
kα β α β

∞

=

=
Γ +∑                                 (4) 

其中 , 0α β > ， z 为复数， ( )Γ ⋅ 为 Gamma 函数，其 Laplace 变化定义为 

( ){ } ( )
1

1
, , .sL t E at R s

s a

α β
β α αα β α λ

−
− − = >

+
 

其中 ( )R s 为 s 的实部， Rλ ∈ ， ( )L ⋅ 为 Laplace 变换。 
考虑如下非线性分数阶混沌系统： 

( ) ( )( )0 , .C
tD x t f x t tα =                                  (5) 

其中 ( )0,1α ∈ ， ( ) nx t R∈ 为系统状态， ( )0 0x t x= ， : n nf R R R× → 为满足局部 Lipschitz 条件的非线性函

数。 
定义 2. 对给定初始时刻 0 0t = 和正数 1 2, ,c c T ，其中 1 2c c< ，如果满足 

[ ]0 1 2 , 0,x c x c t T≤ ⇒ ≤ ∀ ∈  

则称系统(5)关于 ( )1 20, , ,c c T 有限时间稳定。 
引理 1. 如果有 0β > ， ( )a t 为定义在 [ ]0,T 上的局部可积正定函数， ( )g t 为定义在 [ ]0,T 上的非负不

减少连续函数， ( )g t M≤ (常数)，存在一个非负局部可积函数 ( ) [ ]0,u t T∈ 满足： 

( ) ( ) ( ) ( ) ( )1

0
d .

t
u t a t g t t s u s sβ−≤ + −∫                           (6) 

那么一定有 

( ) ( ) ( ) ( )( )
( ) ( ) ( )1

0
1

d .
n

t n

n

g t
u t a t t s a s s

n
ββ

β

∞
−

=

 Γ
 ≤ + −

Γ  
∑∫                     (7) 

注 1. 如 果 引 理 1 中 ( )a t 在 [ ]0,T 上 满 足 非 负 不 减 少 ， 那 么 可 以 把 结 论 简 化 为

( ) ( ) ( ) ( )( ),1u t a t E g t tαα α≤ Γ 。 

引理 2. 如果 ( )0 0C
tD x tα ≤ ，那么 ( )x t 在 [ )0,+∞ 上单调减少；同理 ( )0 0C

tD x tα ≥ ，则 ( )x t 在 [ )0,+∞ 上

单调增加。 
证明：只需证明引理的前半部分，后半部分证明思路同理。因为 ( )0 0C

tD x tα ≤ ，所以一定存在非负可

积函数 ( )y t 使得 

( ) ( )0 0,C
tD x t y tα + =  
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( ) ( )0 .C
tD x t y tα = −                                  (8) 

对(8)式两边同时取α 阶积分 0
C

tD α− 可得 

( ) ( ) ( )00 .C
tx t x D y tα−− = −                              (9) 

若有 2 1 0t t> ≥ 时，有 ( ) ( ) ( )
1 21 2 0C
t tx t x t D y tα− = ≥ ，这也就证明了 ( )x t 在 [ )0,+∞ 上单调减少。 

引理 2 证毕。 
引理 3. 设 ( ) nx t R∈ 且具有连续的一阶导数，则 

( ) ( ) ( ) ( )T T
0 0

1
2

C C
t tD x t Px t x t P D x tα α≤                        (10) 

其中 P 为任意的 n 阶正定矩阵。 

3. 主要结果 

3.1. 有限时间稳定性分析 

定理 1. 考虑系统(1)，对给定初始时刻 0 0t = ，若存在 Lyapunov 函数 ( ),V x t ， ( )g t 为定义在 [ ]0,T 上

的非负不减少连续函数， ,α β 为两个κ -类函数，若满足： 
(1) ( ) ( ) ( ), ,x V x t xα β≤ ≤  
(2) ( ) ( ) ( )0 , , ,C

tD V x t g t V x tα ≤  

(3) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

1
1

2 1 10
1

d .
n

T n

n

g t
c c t s g s c s

n
αα β β

α

−
∞

−

=

 
 ≥ + −

Γ 
 
∑∫  

那么系统(5)关于 ( )1 20, , ,c c T 有限时间稳定。 
证明：对条件(2)两边同时取α 阶积分 

( ) ( ) ( ) ( ) ( ) ( )( )1

0

1, 0 , d .
t

V x t V t s g t V x s s sα

α
−− ≤ −

Γ ∫                  (11) 

其中 ( ) ( )00 ,0V V x= ，对(11)式两边同时乘以 ( )g t  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )1

0
, 0 , d .

tg t
g t V x t g t V t s g t V x s s sα

α
−≤ + −

Γ ∫  

令 ( ) ( ) ( ) ( ) ( ) ( ), , 0U t g t V x t b t g t V= = 可得 

( ) ( ) ( )
( ) ( ) ( )1

0
d .

tg t
U t b t t s U s sα

α
−≤ + −

Γ ∫                        (12) 

由引理 1 可得 

( ) ( ) ( )( )
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0
1

d ,
n
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α
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=

 
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∑∫                (13) 

若 0 1x c≤ ，由条件 1 可知 ( ) ( )10V cβ≤ ，代入(13)式可得 

( ) ( )( )
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由条件(3)可得 [ ]2 , 0,x c t T≤ ∈ ，定理 1 证毕。 
推论 1. 同样考虑系统(5)，对给定初始时刻 0t ，若存在 Lyapunov 函数 ( ),V x t ， ( )g t 为定义在 [ ]0,T

上的非负不减少连续函数， ,α β 为两个κ -类函数，若满足 
(1) 满足定理 1 的条件(1)，(2)， 
(2) ( ) ( ) ( )2 1 ,1 maxc c E g Tα

αα β≥ 。 

其中
[ ]

( ){ }max 0,
max
t T

g g t
∈

= 。则系统(5)关于 ( )1 20, , ,c c T 有限时间稳定。 

证明：由注 2 和(13)式可得 

( ) ( )( )1
1 ,1 max .x c E g Tα

αα β−≤  

若满足 0 1x c≤ ，根据条件(2)易得 [ ]2 , 0,x c t T≤ ∈ 。推论 1 证毕。 
注 2 文献[2] [3] [4]在研究分数阶非线性系统 Lyapunov 稳定时，需要其 Lyapunov 函数单调减少

( ( )0 , 0C
tD V x tα ≤ )，但是从定理 1 和推论 1 中可以发现，在分数阶系统有限时间稳定性分析中并不需要其

满足此类条件，这也是分数阶系统有限时间稳定和 Lyapunov 稳定的不同之处。 

3.2. 同步控制器设计 

考虑分数阶驱动混沌系统和响应混动系统分别为： 
( ) ( ) ( )( )0 .C

tD x t Ax t f x tα = +                             (14) 

( ) ( ) ( )( ) ( )0 .C
tD y t By t g y t u tα = + +                           (15) 

注 3. 目前存在的大部分分数阶非线性混沌系统都可以表示为(14)式，如分数阶统一系统，分数阶

Rossler 系统等。 
定义同步误差 ( ) ( ) ( )e t x t y t= − ，本文的主要目标是设计合适的系统控制输入 ( )u t ，使得误差系统关

于 ( )1 20, , ,c c T 有限时间稳定。 
由系统(14)(15)得同步误差动态方程 

( ) ( ) ( ) ( )0 , .C
tD e t Ae t h x y u tα = + −                           (16) 

其中 ( ) ( )( ) ( )( ) ( ) ( ),h x y f x t g y t A B y t= − + − 。 
为了完成两个分数阶混沌系统有限时间同步，可以设计如下控制器 

( ) ( ) ( ) ( ) ( )1, .
2

u t Ae t h x y g t e t= + − ⋅                         (17)  

其中 ( )g t 为定义在 [ ]0,T 上的非负不减少连续函数。 
定理 2 对于给定初始时刻 0 0t = ，在同步控制器(17)的作用下可实现驱动系统(14)和响应系统(15)关于

( )1 20, , ,c c T 有限时间同步。 
证明：将控制器(17)代入同步误差方程(16)可得 

( ) ( ) ( )0
1 .
2

C
tD e t g t e tα = ⋅  

取 Lyapunov 函数为 T1
2

V e e= ，并对其两边同时取α 阶导数 0
C

tDα 得 

( ) ( )T T T
0 0 0

1 1 .
2 2

C C C
t t tD V D e e e D e g t e e g t Vα α α= ≤ = ⋅ = ⋅  

由推论 1 可知误差系统关于 ( )1 20, , ,c c T 有限时间稳定。 
定理 2 证毕。 
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4. 数值仿真 

仿真中驱动系统设为分数阶 Liu 系统(图 1)，响应系统设为分数阶 Lorenz 系统(图 2)。对应的线性部

分系数矩阵和非线性部分分别为 

( )( ) 1 2
2
1

0 0
0 0 ,

0 0

a a
A b f x t dx x

c hx

−   
   = = −   
   −   

， ( )( ) 1 3

1 2

0 0
1 0 ,

0 0

a a
B b g y t x x

c x x

−   
   = − = −   
   −   

 

任意选取初值分别为 ( ) [ ]T0 0.21 0.15 0.32 1x = − ， ( ) [ ]T0 2.13 1.12 2.32 1.51y = ，取 0.95α = ，

1 5c = ， 2 100c = ， 0.5T = 在 [ ]0,T 上构造 ( ) 2 sing t t= + ，即 max 3g = ，通过计算可满足推论 1 的所有条

件，由定理 2 可知误差系统关于 ( )1 20, , ,c c T 有限时间稳定。仿真结果如图 3，图 4 所示，响应系统和驱

动系统实现了有限时间同步。 
 

 
(a)                        (b) 

Figure 1. Fractional order chaotic Liu system ( ) ( ) ( )( ) ( )1 2 31, 2.5, 5, 0.95, 0 , 0 , 0 0.2,0,0.5a b c x x xα= = = = =  

图 1. 分数阶 Liu 混沌系统 ( ) ( ) ( )( ) ( )1 2 31, 2.5, 5, 0.95, 0 , 0 , 0 0.2,0,0.5a b c x x xα= = = = =  

 

 
(a)                      (b) 

Figure 2. Fractional order chaotic Lorenz system ( ) ( ) ( )( ) ( )1 2 310, 28, 3 8, 0.995, 0 , 0 , 0 0.1,0.1,0.1a b c x x xα= = = = =  

图 2. 分数阶 Lorenz 混沌系统 ( ) ( ) ( )( ) ( )1 2 310, 28, 3 8, 0.995, 0 , 0 , 0 0.1,0.1,0.1a b c x x xα= = = = =  
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Figure 3. The curve of control inputs 
图 3. 控制输入曲线 

 

 
Figure 4. The curve of synchronization error 
图 4. 同步误差曲线图 

5. 结论 

本文研究了分数阶混沌系统有限时间稳定性及其同步控制，通过函数构造提出了分数阶混沌系统有

限时间稳定性理论。基于该理论设计了主动控制器，在满足系统所有变量有界的情况下，实现了分数阶

Liu 系统与分数阶 Lorenz 系统异结构有限时间同步，从数值仿真可以看出误差系统能够在有限时间内稳

定。该理论的研究有助于掌握分数阶混沌系统的相关性质，且同步控制方法也具有良好的鲁棒性能。本

方法仍需进一步改进，针对不同的分数阶控制效果可能出现差异，带未知扰动或更严格的控制输入条件

下(死区等)实现同步控制也需要进一步研究。 
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