Published Online May 2025 in Hans. https://www.hanspub.org/journal/pm https://doi.org/10.12677/pm.2025.155176

极小3-连通平面图的构造

祝誉升

南宁师范大学数学与统计学院, 广西 南宁

收稿日期: 2024年11月29日; 录用日期: 2025年4月14日; 发布日期: 2025年5月31日

摘要

设 g 是由满足以下条件的3-连通平面二部图所组成的图类: g 的一部是3度点的集合,另外一部是度至少为4的点的集合。本文证明了若G是极小3-连通平面图且G中不存在边e使得G/e或G/ef是极小3-连通平面图,则 $G \in G$,这里f与e相邻于一个3度点。

关键词

极小3-连通平面图,结构

The Structure of Minimally 3-Connected Planer Graphs

Yusheng Zhu

School of Mathematics and Statistics, Nanning Normal University, Nanning Guangxi

Received: Nov. 29th, 2024; accepted: Apr. 14th, 2025; published: May 31st, 2025

Abstract

Let $\mathcal G$ be a set of minimally 3-connected planer graphs such that every member of $\mathcal G$ is a bipartite graph with one parts of vertices of degree three and the other parts of degree at least four. Let G be a minimally 3-connected planar graph. This paper show that if G has no edge e such that either G/e or $G/e\setminus f$ is minimally 3-connected planar graph then $G\in \mathcal G$; here e and f are two edges incident to a vertex of degree 3.

Keywords

Minimally 3-Connected Planar Graph, Structure

文章引用: 祝誉升. 极小 3-连通平面图的构造[J]. 理论数学, 2025, 15(5): 272-279.

DOI: 10.12677/pm.2025.155176

Copyright © 2025 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

本文所考虑的图都是简单图。设G = (V(G), E(G)),其中V(G)是 G 的顶点集合,V(G)是 G 的边集合。对于子集 $T \subseteq V(G)$,若 G - T 是不连通的,则称 T 是 G 的一个点割。若 |T| = k ,则称 T 是一个 k-点割。若 $|V(G)| \ge k$ 且 G 中没有 k - 1 -点割,则我们称 G 是 k-连通的。对任意 $x \in V(G)$, d(x) 表示 x 的度。设 $A \subseteq V(G)$,用 G[A]表示 G 的由顶点集 A 导出的子图,用 G - A 表示图 G 去掉顶点集 A 所得到的图。

设 T是一个点割且 $|T|=\kappa(G)$,若 A是 G-T至少一个分支但不是所有分支的并,则称 A是一个 T-断片。在不引起混淆的情况,我们简称 A是一个断片。若 A是一个 T-断片,则易见 $\overline{A}:=G-T-A$ 也是 T-断片。若断片 A 中任意真子集都不再是断片,则称 A 为端片。设 G是 k-连通图, T_0 是 G 中所有 k-点割的集合。取 $T \subseteq T_0$,若 $N(A) \in T$ 则称一个断片 A是一个 T-断片。设 A是 T-断片且 A 的任意真子集都不再是 T-断片,则称 A是 T-端片。

设 e=xy 是 k-连通图 G 的边,若将 e 的两个端点用一个新的顶点代替并使新的顶点与 x 和 y 的所有 邻点连边所得到的图记为 G/e。若 G/e 还是 k-连通图则称 e 是 G 的 k-可收缩边,否则我们称 e 是不可收缩边。在不引起混淆的情况下我们简称 e 是 G 的可收缩边。若 G 是 k-连通图,e 是 G 的 k-可收缩边,则 G/e 是 k-连通图。e 是 G 的 k-可收缩边,则 G 和 G/e 连通度相同且 G/e 的顶点数比 G 的顶点数少。G/e 收缩边的存在,使得人们可以用归纳法证明一些图的性质。例如,利用 G/e 3-连通图一定存在 G/e 3-可收缩边这一性质,人们利用归纳法证明了著名的 G/e G/e

Theorem 1. 设 G 是平面图当且仅当 G 不包含 $K_{3,3}$ 或 K_{5} 作为子式。

Figure 1. Contracting edge xy into a vertex 图 1. 边 xy 的收缩

另一方面,由定义可知,若 e 是 G 的不可收缩边,则 G 中存在 k-点割 T 使得 e 的两个端点都包含在 T 内。

设 e 是 k-连通图的边,若 G-e 还是 k-连通图则称 e 是 G 的 k-可去边,在不引起混淆的情况下简称 e 是 G 的可去边。为方便叙述,我们记 $G\setminus e=G-e$ 。不存在可去边的 k-连通图称为极小 k-连通图。若 G 是 极小 k-连通图,e 是 G 的一条边,由于 G-e 不是 k-连通图,则 G-e 中存在 k-1-点集 T 使得 G-e-T 不 连通且 G-e-T 恰有两个分支 A_1 和 A_2 满足 e 的两个顶点分别包含在 A_1 和 A_2 中。

设 G_1 和 G_2 是两个图, $\phi:V(G_1)\to V(G_2)$ 是一一映射,满足 uv 是 G_1 的边当且仅当 $\phi(u)\phi(v)$ 是 G_2 的边。我们称 ϕ 是 G_1 到 G_2 的同构映射。此时,称 G_1 与 G_2 同构,记为 $G_1\cong G_2$ 。由定义可知, $G_1\cong G_2$ 表明这两个图本质上是一样的。

设 G 是 k-连通图,H 是由 G 的子图经过去点、去边和收缩边运算得到,我们称 H 是 G 的子式。设 H 和 G 都是 3-连通图且 H 是 G 的子式,称边 e 是 H-可去边,如果 G/e 是 G 3-连通图且包含 G 的子式,称边 G 是 G 是 G 的子式。设 G 和 G 都是 G 3-连通图,G 的子式且 G 是 G 的子式且 G 包 间不构成同构关系,G P. Seymour 在 G 1980 年证明了,除了一类特殊例外图,G 中存在 G 中不力。 G 中存在 G 的子式也或 G 中内缩边。

人们对极小k-连通图的结构进行了诸多研究,得到了一系列结论。W.Mader [1]证明了极小k-连通图

的每一个圈上至少有一个 k-度点,由此他给出了极小 k-连通图中 k-度点数量的下界。

Theorem 2. [1]设 G 是一个极小 k-连通图,则 G 中至少有 $\frac{(k-1)n+2k}{2k-1}$ 个 k 度点,这里的 n 是图 G 的 顶点个数。

K.Ota [2]等人对极小 3-连通图的可收缩边分别进行了研究, N.Dean [3]等人对极小 3-连通图最长圈上的可收缩边的数目进行了估计,得到了如下结论:

Theorem 3. [2]设 G 是一个极小 3-连通图且 $|G| \ge 5$,则 G 中至少有 $\frac{|V(G)| + 3t}{2}$ 条可收缩边,这里的 t 是度大于等于 3 的顶点个数。

Theorem 4. [3]设 *G* 是一个极小 3-连通图且 $|G| \ge 7$, *C* 是 *G* 的最长圈,则 *C* 上的可收缩边的数目不小于 $\frac{1}{3}|E(C)|$ 。

关于极小 3-连通图的构造, 也已经有了很多的研究。为方便叙述, 我们先介绍如下运算:

运算 A: 设点 x 和边 ab 在 3-连通图 G 中不关联, 在 ab 中插入一个点 v 并连接 xv;

运算 B: 设边 ab 和边 cd 是 3-连通图 G 的两条边, 在 ab 和 cd 中分别插入点 x 和 y 并连接 xy;

运算 C: 设点 x, y, z 是 3-连通图 G 的三个点, 在 G 加入一个新的顶点 w 并使其和 x, y, z 都连边。

定义 1.设 G 是连通图,路 P 称为弦路,如 P 与某一个圈 C 的公共部分仅为 P 中某一条边的两个端点。

定义 2.设 G 是连通图,S 是 $V(G) \cup E(G)$ 的子集,若 S 满足如下条件之一则称 S 是 3-compatible:

- 1) $S = \{x, ab\}$, 其中 x 是点, ab 是边, $x \notin \{a, b\}$ 且 x-a 路和 x-b 路都不是 G-ab 中的弦路。
- 2) $S = \{ab, cd\}$, 其中 ab 和 cd 是不同边,且 a-c 路,a-d 路,b-c 路,b-d 路都不是 G-ab-cd 中的弦路。
- 3) $S = \{x, y, z\}$, 其中 x, y, z 是不同的顶点且 x-y 路, y-z 路, z-x 路都不是 G 中的弦路。

Robin W.Dawes [4]对极小 3-连通图的构造进行了研究,证明了如下定理:

Theorem 5. [4]设 H 是极小 3-连通图,G 是对 H 上的集合 S 进行运算 A 或运算 B 或运算 C 得到的图,则 G 是极小 3-连通图当且仅当 S 是 G 3-compatible。

定理 1 给出了极小 3-连通图的构造方式,但是这里必须要验证 *S* 是 3-compatible,这在实际应用中是不容易做到的。K.Ota 等人对曲面上的极小 3-连通图进行了研究,给出了这类图的边数的上界。

Theorem 6. [2]设 G 是阶为 n 的极小 3-连通图,G 可嵌入欧拉示性数为 χ 的闭曲面上,则有

$$|E(G)| \le \begin{cases} 2n-2 & \chi = 2\\ 2n-\chi & \chi \le 1 \end{cases}$$

定理 2 证明的思路是用归纳法,即讨论一个极小 3-连通平面图如何通过运算得到更小的极小 3-连通图,并且每次这样的运算所减少的边的数目是可以确定的。另一方面,有学者对含有某一个图作为子式的 3-连通图的结构进行了研究。

Theorem 7. [5]设 G 和 H 是简单 3-连通图,H 是 G 的子式且 $G \neq W_n$, $H \neq W_3$,则 G 存在一条边使得 $G' = G \setminus e$ 或者 G' = G/e 是简单 3-连通图且 H 是 G' 的子式。

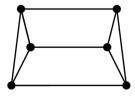


Figure 2. Prism
2. Prism

Theorem 8. [6]设 G 和 H 是简单 3-连通图,H 是 G 的子式且 G 不存在 H-可去边,则存在图 G' 使得 H 是 G' 子式且 G' 没有 H-可去边,其中 G' 满足如下条件之一:

- 1. G' = G/e; (运算一)
- 2. $G' = G \setminus f/e$, 其中 e, f = G 的同一个 3-度点相关联; (运算二)
- 3. G' = G w。(运算三)

Theorem 9. [6]设 G 是平面图,则如下结论成立:

- 1. $|E(G)| \le 3|V(G)| 6$,等式成立当且仅当其嵌入平面时每一个面都是三边形。
- 2. 若 G 不含三边形,则 $|E(G)| \le 2|V(G)| 4$,等式成立当且仅当其嵌入平面时每一个面都是四边形。

Theorem 10. [7] 设 G 是简单 3-连通图,则 G 存在 Prism 作为子式当且仅当 $G \notin \{K_5 - e, K_5, K_{n-33}, W_n, K'_{n-33}, K''_{n-33}\}$ 。

关于极小 3-连通平面图的构造, S. R. Kingan 提出了如下问题:

问题 1. [6]设 G 是极小 3-连通平面图,且 $G \neq W_n$,则 G 是否可以通过一系列运算一和运算二得到 prism?

为了叙述方便,我们记满足条件 $G[V_3(G)]\cong \overline{K}_t$, $G[V_4(G)]\cong \overline{K}_t$ 的极小平面 3-连通图所组成的图类为G。令 $C=x_1y_1x_2y_2\cdots x_ny_nx_1$ 是长为 2n 的圈,增加点 x_{ii} ,使得 x_{ii} 与 x_i 的邻点都相邻, $i\in\{1,2,\cdots,n\}$ 。在此基础上增加点 a 和 b,使得 a 和 x_{ii} 相邻, b 和 x_i 相邻, $i\in\{1,2,\ldots,n\}$,我们把最终所得到的图记为 G_n 。容易验证 $G\in G$ 。令 $C_x=x_1x_2x_3\cdots x_nx_1$, $C_y=y_1y_2y_3\cdots y_ny_1$, $C_z=z_1z_2z_3\cdots z_nz_1$ 都是长为 n 的圈,其中 n 为偶数。将 z_i 与 x_i , y_i 相连, $i\in\{1,2,\cdots,n\}$ 。将所得到的图记为 H。对 $i\in\{1,2,\cdots,n\}$,用 z_{i1} 和 z_{i2} 替代 z_i 使得 z_{i1} 与 z_{i-1} , x_i , y_i 相连, z_{i2} 与 z_{i+1} , x_i , y_i 相连。我们把最终所得到的图记为 H_n 。容易验证 $H_n\in G$ 。

我们注意到 G_n 和 H_n 中的每一条边收缩后至少还要去掉两条边才能得到极小 3-连通图。因此, G_n 和 H_n 不能通过运算一和运算二得到更小的极小 3-连通平面图。进一步,由 G_n 和 H_n 可知图类 G 中存在无限 多个图,这些图不能通过运算一和运算二得到更小的极小 3-连通平面图。

本文我们对问题 1 进行了研究,证明了如下结论:

Theorem 11. 设 G 是极小 3-连通平面图且不是轮图,若 G 不能通过一系列运算一和运算二得到更小的极小平面 3-连通图,则 $G \in \mathcal{G}$ 。

2. 主要定理的证明

为证明主要定理,我们需要如下引理。

Lemma 12. [8]设 G 是一个 k-连通图, T_i 是一个 k-点割,i=1,2。令 A 是一个 T_1 -断片,B 是一个 T_2 -断片。若 $B \cap A \neq \varnothing$,则 $\left|T_2 \cap A\right| \geq \left|\overline{B} \cap T_1\right|$ 。

Lemma 13. [8]设 G 是一个 k-连通图,T 是 G 满足特定性质的 k-点割的集合。假设 $T_i \in T$, F_i 是一个 T_i -断片,i=1,2。若 F_1 是一个 T -端片使得 $F_1 \subseteq F_2$ 但 $F_1 \neq F_2$ 且 $F_1 \cap F_2 \neq \emptyset$,则 $\overline{F_1} \cap \overline{F_2} = \emptyset$, $F_1 \cap F_2$ 不是 断片, $|T_2 \cap F_1| > |\overline{B} \cap T_1|$ 且 $|(T_2 \cap F_1) \cup (T_2 \cap T_1)| > k$ 。

Lemma 14. [9]设 G 是 3-连通图,则 G 中的 3 度点至少关联一条 3-可收缩边。

Lemma 15. [9]设 G 是极小 3-连通图,e 是两端点度数都至少为 4 的边,则 e 是 G 的可收缩边。

Lemma 16. [6]设 G 是极小 3-连通图,e=xy 是 G 的可收缩边,则如下结论成立:

1)若 $d(x) \ge 4$, $d(y) \ge 4$,则 G/e 是极小 3-连通图。

2)若 d(x) = d(y) = 3 , 则存在边集 $F \subseteq E(G/e)$ 且 $|F| \le 1$ 使得 G/e - F 是极小 3-连通图。

Lemma 17. [10]设 G 是极小 3-连通图, x 是 G 的 3 度点。若 x 与两条不可收缩边关联,则 G 中有三

边形包含 x。

由定理 10 可知如下引理成立:

Lemma 18. 设 G 是简单 3-连通平面图,则 G 有 Prism 子式当且仅当 $G \notin \{W_n, K_5 - e\}$ 。

由引理 18 和定理 8 可得如下引理:

Lemma 19. 设 G 是极小 3-连通平面图且 $G \notin \{W_n, K_5 - e\}$,则存在极小 3-连通图使得 G' 有 Prism 子式且满足下列条件之一:

- 1) G' = G/e;
- 2) $G' = G \setminus f/e$, 其中 e, f = G 的同一个 3 度点关联;
- 3) G' = G w.

证明:由于G是极小3-连通平面图,故G不存在Prism-可去边。由定理8可知,存在G'使得G'存在Prism子式且满足定理条件。

Lemma 20. 设 G 是极小 3-连通平面图,xyz 是 G 的三边形,则 x, y, z 中至少有两个 3 度点。

证明: 假设结论不成立。由 G 是极小 3-连通图可知 G 的每一个圈上至少有一个 3 度点。不妨设 d(x)=3。若 $d(y)\ge 4$, $d(z)\ge 4$,则由 G 为极小 3-连通图可知,G-yz 中存在 2-点割 T 使得 G-yz-T 的两个分支都至少 2 个点。记 G-yz-T 的两个分支为 H_1 和 H_2 。显然 $x\in T$ 。由对称性,设 $y\in H_1$, $z\in H_2$ 。由 d(x)=3 可知 $|N(x)\cap H_1|=1$ 或 $|N(x)\cap H_2|=1$ 。不妨设 $|N(x)\cap H_1|=1$ 。于是 $T\cup\{y\}-x$ 是 G 的 2-点割,矛盾。故 y 或 z 必有一个点是 3 度点。引理整毕。

Lemma 21. 设 G 是极小 3-连通平面图且 w 是 G 顶点且 $N(w) = \{x_1, x_2, x_3\}$, $d(x_i) \ge 4$,这里 $i \in \{1, 2, 3\}$,则如下结果成立:

- 1) $G\lceil\{x_1,x_2,x_3\}\rceil \cong \overline{K_3}$;
- 2) $|E(w) \cap E_C(G)| \ge 2$.

证明: 1) 假设结论不成立。不妨设 $x_1x_2 \in E(G)$,于是 xx_1x_2 是三边形。注意到 $d(x_1) \ge 4$, $d(x_2) \ge 4$, 这与引理 20 矛盾,故 $x_1x_2 \notin E(G)$,同理可知 $x_1x_3 \notin E(G)$, $x_2x_3 \notin E(G)$ 。故 $G[\{x_1,x_2,x_3\}] \cong \overline{K_3}$ 。

2) 假设 $|E(w) \cap E_c(G)| \le 1$,则 w 与 2 条不可收缩边关联,设 wx_1 和 wx_2 是与 w 关联的不可收缩边。设 T 为包含 wx_1 的最小点割,A 为 G-T 的一个分支。由于 d(w) = 3,可知 $|N(w) \cap A| = 1$ 且 $|N(w) \cap \overline{A}| = 1$ 。此时,不妨设 $x_2 \in A$, $x_3 \in \overline{A}$ 。由于 wx_2 是不可收缩边,故存在最小点割 $T_1 \supseteq \{w, x_2\}$ 。设 B 是 $G-T_1$ 的一个分支。

若 $A \cap B \neq \emptyset$,则由 $|N(w) \cap A| = 1$ 可知 $N(w) \cap B \cap A = \emptyset$ 。于是 $\overline{A} \cap \overline{B} = \emptyset$ 。若 $A \cap \overline{B} \neq \emptyset$,则同理可知 $\overline{A} \cap B \neq \emptyset$ 。于是 $\overline{A} = \overline{A} \cap T_1$ 。此时可知 $|\overline{A}| = 1$,即 $d(x_3) = 3$,矛盾。于是 $A \cap \overline{B} = \emptyset$,进而 $\overline{B} = \overline{B} \cap T$ 。此时,我们易见 $x_1 \in \overline{B} \cap T$ 。由 $d(x_1) \ge 4$ 可知, $|\overline{B} \cap T| \ge 2$ 。由于 $|A \cap T_1| > |\overline{B} \cap T|$,可知 $|A \cap T_1| \ge 3$,于是 $|T_1| \ge 4$,矛盾。所以 $A \cap B = \emptyset$ 。

同理,可以证明 $A \cap \overline{B} \neq \emptyset$ 。于是 $A = A \cap T_1$ 。由 $d(x_1) \geq 4$,可知 $|A \cap T_1| \geq 2$ 。故 $\overline{A} \cap T_1 = \emptyset$ 。 不妨设 $A \cap \overline{B} \neq \emptyset$ 。于是 $|B \cap T| \geq 2$,故 $\overline{B} \cap T = \emptyset$ 。故 $\overline{A} \cap \overline{B} = \emptyset$ 。故 $\overline{B} = \emptyset$,矛盾。引理证毕。

Lemma 22. 设 G 是极小 3-连通平面图,若 G 中存在三边形,则 G 可以通过运算一或运算二得到更小的极小平面 3-连通图。

证明: 设 xyz 是 G 的三边形, 由引理 20, 不妨设 d(x) = d(y) = 3。设 $N(x) = \{y, z, x^*\}$, $N(y) = \{x, z, y^*\}$, 易见 xx^* 和 yy^* 都是 3-可收缩边。

若 d(z)=3,设 $N(z)=\{y,x,z^*\}$ 。易见 xx^* 不在三边形内(否则,若 xx^* 在三边形内,则不妨设 $x^*=y^*$,于是 $\{z^*,x^*\}$ 是 G 的 2 点割,矛盾)。于是, G/xx^* 是简单 3-连通图。若 G/xx^* 不是极小 3-连通图,则存在边集 F 使得 G/xx^*-F 是极小 3-连通图。将 xx^* 收缩后得到的点记为 $\overline{xx^*}$,则必有 F 中的边都与 $\overline{xx^*}$ 关联。进一步,由于 d(y)=d(z)=3,我们有 F 中的边都与 x^* 关联。若 $d(x^*)\geq 4$,F 中存在边 e 使得 G-e 是 3-连通,矛盾。所以 $d(x^*)=3$,于是 $d_{G/x^*}(\overline{xx^*})=4$,故 $|F|\leq 1$ 。即 G 可以通过运算一或运算二得到更小的极小平面 3-连通图。

若 $d(z) \ge 4$,此时,类似于上面的证明我们可知 $x^* \ne y^*$ 。若 xx^* 在三边形内,必有 x^* 与 z^* 相邻。由引理 20 可知 $d(x^*) = 3$,于是 $G/xx^* - zx^*$ 是极小 3-连通图。即 G 可以通过运算一或运算二得到更小的极小平面 3-连通图。故不妨设若 xx^* 不在三边形内。这里我们分 $d(x^*) = 3$ 和 $d(x^*) \ge 4$ 两种情形讨论。若 $d(x^*) = 3$,则 $d_{G/xx^*}(\overline{xx^*}) = 4$,又由于 F 中的边都与 $\overline{xx^*}$ 关联。故 $|F| \le 1$,即 G 可以通过运算一或运算二得到更小的极小平面 3-连通图。若 $d(x^*) \ge 4$,由于 F 中的边都与 $\overline{xx^*}$ 关联,若 $|F| \ge 2$,则 F 中必有一条边,设为 e,是与 x^* 关联的,于是 G-e 是 3-连通图,矛盾。故 $|F| \le 1$ 并且 F 中的边一定是与 x 关联的,即 G 可以通过运算一或运算二得到更小的极小平面 3-连通图。

下面完场定理11的证明。

设 G 是极小 3-连通图且 G 不能通过运算一或运算二得到更小的极小平面 3-连通图。由引理 22 可知 G 中不存在三边形。为证明定理 11,只需证明如下断言成立。

断言 若 $xy \in E(G)$,则d(x)=3, $d(y) \ge 4$ 。

证明: 若d(x)=d(y)=3,设 $N(x)=\{x_1,x_2,y\}$ 。注意到G中不存在三边形,由引理17,x关联至少2条可收缩边。不妨设 xx_1 是可收缩边,则由G不含三边形可知, G/xx_1 是简单3-连通图。由于G不能通过运算一或运算二得到更小的极小平面3-连通图,可知 G/xx_1 不是极小3-连通图。于是存在边集F使得 $G/xx_1 \setminus F$ 是极小3-连通图。

若 $d(x_1)=3$,则 $d_{G/x_1}(\overline{xx_1})=4$,于是 |F|=1,即 G 可以通过运算二得到更小的极小平面 3-连通图,矛盾。故不妨设 $d(x_1)\geq 4$ 。若 |F|=1,则 G 可以通过运算一得到更小的极小平面 3-连通图,矛盾。于是, $|F|\geq 2$ 。由于 d(y)=3,则 F 中存在边 e 且 e 不与 x_2 ,y 关联。因此,e 是 G 的边,故 e 在 G 中不与 $\{x_2,y\}$ 中的点关联。类似于上面的证明可知 G-e 是 3-连通图,矛盾。所以,我们有 $d(x)\geq 4$ 或 $d(y)\geq 4$ 。

若 $d(x) \ge 4$, $d(y) \ge 4$,则由引理 15 可知 e 是可收缩边。于是由引理 16 可知 G/e 是极小 3-连通图,矛盾。于是断言成立,引理证毕。

基于图类G的构造特征,我们提出如下问题。

问题 2. 设 $G \in \mathcal{G}$,则 G 是否不能通过一系列运算一和运算二得到阶更小的极小 3-连通平面图?

问题 3. 设 $G \in \mathcal{G}$ 且 G 通过一系列运算一和运算二得到阶更小的极小 3-连通平面图。x 是 G 的任意 3 度点,则 G-x 是否为极小 3-连通平面图?

如果问题 2 的答案是肯定的,则可以得到极小 3-连通图不能通过一系列运算一和运算二得到阶更小的极小 3-连通平面图的充分必要条件,这将会是非常有意义的结论。关于问题 3,我们有如下局部的结论。

Theorem 23. 设 $G \in \mathcal{G}$,则 G 存在至少 6 个 3 度点,使得 G 去掉其中的每一个点后得到的图都是极小 3-连通平面图。

证明:设x是G的3度点且G-x不再是3-连通图,则存在包含x的3-点割T。我们将G中包含3度点的3-点割的集合记为T。

断言 1. 设 $A \in G$ 的 \mathcal{T} -断片,则 $|A| \ge 4$ 。

证明:设T = N(A),x 是包含在 T 中的 3 度点。令 $x_1 \in N(x) \cap A$,于是 $d(x_1) \ge 4$ 。故 $|A| \ge 2$ 且 G[A] 中存在边。若|A| = 2,则易见 G 中存在三边形,矛盾。故不妨设|A| = 3。若 A 中有 2 个 3 度点,则易见 T = x 中的点都是度至少为 4 的点。于是, x_1 必然与T = x 中的一个点相邻,即 G 中存在相邻的度至少为 G 4 的两个点,矛盾。若 G 中含有 G 个度至少为 G 4 的点,则易见 G 中存在两个相邻的 G 度点。于是,G 中存在两个目 G 的。故断言 G 成立。

断言 2. 设 $A \neq G$ 的 T-端片,则对 A 中的任意 3 度点 u 都有 G-u 是 3-连通图。

证明: 设 A 是一个 T -端片。设 T = N(A),x 是包含在 T 中的 3 度点。令 $x_1 \in N(x) \cap A$,于是 $d(x_1) \geq 4$ 。 故 $|A| \geq 4$ 且 G[A] 中存在边,由此可知 A 中存在 3 度点。设 y 是 A 中的 3 度点,取 T_1 为 G 中包含 y 的 3-点割,B 为一个 T_1 -断片。若 $B \cap A \neq \varnothing$,则由 A 是 G 的 T -端片及引理 13 可知 $B \cap A$ 不是 T-断片。于是,我们有 $\overline{B} \cap \overline{A} = \varnothing$ 且 $|A \cap T_1| > |\overline{B} \cap T|$, $|B \cap T| > |\overline{A} \cap T_1|$ 。此时,若 $\overline{B} \cap A \neq \varnothing$,则同理可知 $B \cap \overline{A} = \varnothing$,且 $|\overline{B} \cap T| > |\overline{A} \cap T_1|$ 。此时, $\overline{A} = \overline{A} \cap T_1$ 。由于 \overline{A} 是 T -断片,因此, $|\overline{A}| \geq 4$ 。于是, $|T_1| \geq 4$,矛盾。故不妨设 $\overline{B} \cap A = \varnothing$,于是 $\overline{B} = \overline{B} \cap T$ 。类似于上面的证明,我们可知 $|T| \geq |\overline{B}| \geq 4$ 。故 $B \cap A = \varnothing$, $\overline{B} \cap A = \varnothing$,于是 $A \subseteq T_1$,即 $|T| \geq 4$,矛盾。故断言 2 成立。

断言 3. 设 $A \neq G$ 的 T-端片,则 A 中包含至少 $2 \uparrow 3$ 度点。

证明:设T = N(A), x 是包含在T中的 3 度点。令 $x_1 \in N(x) \cap A$,于是 $d(x_1) \ge 4$ 。设A 恰好包含一个 3 度点,设为u。此时必有|A| = 4 且T 中的点都是 3 度点。另一方面,注意到T 中的每一个点都在A 中有 3 个邻点,即T 中的每一个点都在 \overline{A} 中没有邻点,矛盾。故A 至少包含 2 个 3 度点。断言 3 成立。

断言 4. 设 $A \in G$ 的 T -端片,则 A 中包含至少 3 个 3 度点。

证明:用反证法。设 A 中恰有 2 个 3 度点。设 T = N(A), x 是包含在 T 中的 3 度点。我们先证明 $|A| \ge 5$ 。如若不然,设 $A = \{x_1, x_2, y_1, y_2\}$,其中 $d(x_1) = d(x_2) = 3$, $d(y_1) \ge 4$, $d(y_2) \ge 4$ 。于是 T 中至少有 2 个 3 度点。设 $T = \{u_1, u_2, u_3\}$,其中 u_1 , u_2 是 3 度点。由 G 的定义可知 u_3 是度至少为 4 的点。此时, $G[\{x_1, x_2, y_1, y_2\}] \cong K_{2,3}$ 。注意到 u_1 同时与 y_1 和 y_2 相邻。令 $H = G - \{x_1, x_2, y_1, y_2, u_3\}$,此时,H 是连通图。显然, $G/H \cong K_{3,3}$ 。这与 G 是平面图矛盾。

于是 $|A| \ge 5$ 。若 $|A| \ge 6$,则由 A 中恰有两个 3 度点可知 A 至少有 4 个度至少为 4 的点。由此,可知 $A \cup T$ 中至少有 6 个 3 度点。另一方面,由于 A 中恰有两个 3 度点, $A \cup T$ 中至多有 5 个 3 度点,矛盾。故不妨设|A| = 5。

设 $A = \{x_1, x_2, y_1, y_2, y_3\}$,其中 $d(x_1) = d(x_2) = 3$, $d(y_1) \ge 4$, $d(y_2) \ge 4$, $d(y_3) \ge 4$ 。于是 T 中至少有 2 个 3 度点。设 $T = \{u_1, u_2, u_3\}$,其中 $d(u_1) = 3$, $d(u_2) = 3$ 。若 u_3 是度至少为 4 的点,此时, $G[\{x_1, x_2, u_1, u_2, y_1, y_2, y_3\}] \cong K_{4,3}$, 这 与 G 是 平 面 图 矛 盾 。 故 不 妨 设 $d(u_3) = 3$, 于 是 $G[\{x_1, x_2, y_1, y_2, y_3\}] \cong K_{3,3}$ 。此时, $G[\{u_1, u_2, u_3, y_1, y_2, y_3\}]$ 是 2-正则图, $G[\{u_1, u_2, u_3, y_1, y_2, y_3\}]$ 存在完美

匹配。令 $H = G - \{x_1, x_2, y_1, y_2, y_3\}$,则易见H是连通图。于是, $G/H \cong K_{3,3}$,这与G是平面图矛盾。故断言4成立。

下面我们完成定理 23 的证明。首先,由定义可知 G 中至少有 4 个 3 度点。若 G 中恰有 4 个 3 度点则 $G \cong K_{4,3}$,这与 G 是平面图矛盾。故不妨设 G 至少有 6 个 3 度点。若 G 的每一个 3 度点去掉后都还是 3 连通图,则结论成立。故不妨设 G 存在 3 度点 x 使得 G-x 不再是 3-连通图。我们将 G 中包含 3 度点的 3-点割的集合记为 T 。由定义可知 G 存在两个 T -端片,由断言 2 和断言 4 可知定理 23 成立。

参考文献

- [1] Mader, W. (1972) Ecken Vom Gradn in Minimalenn-Fach Zusammenhangenden Graphen. *Archiv der Mathematik*, **23**, 219-224. https://doi.org/10.1007/bf01304873
- [2] Ota, K. and Saito, A. (1988) Non-Separating Induced Cycles in 3-Connected Graphs. Scientia Series A, 2, 101-105.
- [3] Dean, N., Hemminger, R.L. and Ota, K. (1989) Longest Cycles in 3-Connected Graphs Contain Three Contractible Edges. *Journal of Graph Theory*, **13**, 17-21. https://doi.org/10.1002/jgt.3190130105
- [4] Dawes, R.W. (1986) Minimally 3-Connected Graphs. Journal of Combinatorial Theory, Series B, 40, 159-168. https://doi.org/10.1016/0095-8956(86)90074-2
- [5] Coullard, C.R. and Oxley, J.G. (1992) Extensions of Tutte's Wheels-And-Whirls Theorem. *Journal of Combinatorial Theory*, Series B, 56, 130-140. https://doi.org/10.1016/0095-8956(92)90012-m
- [6] Kingan, S.R. (2023) Deletable Edges in 3-Connected Graphs and Their Applications. arXiv:1 802.02660.
- [7] Dirac, G.A. (1963) Some Results Concerning the Structure of Graphs. *Canadian Mathematical Bulletin*, **6**, 183-210. https://doi.org/10.4153/cmb-1963-019-5
- [8] Mader, W. (1988) Generalizations of Critical Connectivity of Graphs. Annals of Discrete Mathematics, 38, 267-283. https://doi.org/10.1016/s0167-5060(08)70793-3
- [9] Halin, R. (1969) Zur Theorie Dern-Fach Zusammenhängenden Graphen. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 33, 133-164. https://doi.org/10.1007/bf02992931
- [10] Qin, C., Geng, J., Yang, H. and Xie, X. (2025) Contractible Edges in Spanning Trees of 3-Connected Graphs. *Graphs and Combinatorics*, **41**, Article No. 22. https://doi.org/10.1007/s00373-025-02890-0