Published Online October 2025 in Hans. https://www.hanspub.org/journal/pm https://doi.org/10.12677/pm.2025.1510258

利用形心坐标公式计算曲面积分

雷竞雄

武警警官学院基础部,四川 成都

收稿日期: 2025年9月8日; 录用日期: 2025年10月15日; 发布日期: 2025年10月28日

摘要

形心坐标(几何中心坐标)在计算多元函数积分中是一个非常有用的工具,但是具体的使用场景较为模糊,本文给出形心坐标公式在计算曲面积分上的应用情况。

关键词

形心坐标公式, 曲面积分

Calculating the Surface Integral Using the Centroid Coordinate Formula

Jingxiong Lei

Basic Department, Officers College of PAP, Chengdu Sichuan

Received: September 8, 2025; accepted: October 15, 2025; published: October 28, 2025

Abstract

Centroid coordinates (geometric center coordinates) are a very useful tool in calculating integrals of multivariate functions, but the specific usage scenarios are relatively vague. This article presents the application of centroid coordinate formulas in calculating surface integrals.

Keywords

Centroid Coordinate Formula, Surface Integral

Copyright © 2025 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/

Open Access

文章引用: 雷竞雄. 利用形心坐标公式计算曲面积分[J]. 理论数学, 2025, 15(10): 156-158. DOI: 10.12677/pm.2025.1510258

1. 预备知识

形心坐标的定义:

设有一平面薄片,占有 xoy 面上的闭区域 D,在点(x,y)处的面密度为 $\mu(x,y)$,且在 D上连续。利 用微元法的静距元素[1]: $dM_v = x\mu(x,y)d\sigma$, $dM_x = y\mu(x,y)d\sigma$

所以薄片的质心坐标为:
$$\overline{x} = \frac{M_y}{M} = \frac{\iint\limits_D x \mu(x,y) d\sigma}{\iint\limits_D \mu(x,y) d\sigma}$$
, $\overline{y} = \frac{M_x}{M} = \frac{\iint\limits_D y \mu(x,y) d\sigma}{\iint\limits_D \mu(x,y) d\sigma}$

当薄片是均匀的,即面密度为常量,由

$$\overline{x} = \frac{M_y}{M} = \frac{\iint_D x \mu(x, y) d\sigma}{\iint_D \mu(x, y) d\sigma} = \frac{1}{A} \iint_D x d\sigma , \quad \iint_D x d\sigma = A\overline{x} ,$$

$$\overline{y} = \frac{M_x}{M} = \frac{\iint_D y \mu(x, y) d\sigma}{\iint_D \mu(x, y) d\sigma} = \frac{1}{A} \iint_D y d\sigma , \quad \iint_D y d\sigma = A\overline{y}$$

其中 $A = \iint d\sigma$ 为闭区域 D 的面积。此时薄片的质心完全由闭区域 D 的形状所决定,将均匀薄片的质心叫 做这平面薄片所占的平面图形的形心[2]-[4]。

则对于曲面积分有:

$$\overline{x} = \frac{\iint_{\Sigma} x\mu(x, y, z) dS}{\iint_{\Sigma} \mu(x, y, z) dS},$$

$$\overline{y} = \frac{\iint_{\Sigma} y\mu(x, y, z) dS}{\iint_{\Sigma} \mu(x, y, z) dS},$$

$$\overline{z} = \frac{\iint_{\Sigma} z\mu(x, y, z) dS}{\iint_{\Sigma} \mu(x, y, z) dS}$$

2. 当被积函数是线性函数时

如果积分区域 D (对于二重积分)或 Ω (对于三重积分)的形心 (\bar{x},\bar{y}) 或 $(\bar{x},\bar{y},\bar{z})$ 已知,并且被积函数 f(x,y)或 f(x,y,z)是一个线性函数,那么积分值等于形心处的函数值乘以区域的面积 S_D 或体积 V_{Ω} [4]。 下面给出证明:

定理一(二重积分) $\iint_D (ax+by+c) d\sigma = (a\overline{x}+b\overline{y}+c) \cdot S_D$, 其中: $(\overline{x},\overline{y})$ 是区域 D 的形心坐标, S_D 是区 域的面积,被积函数 f(x,y) = ax + by + c 是线性函数。

证明
$$\iint_D (ax + by + c) d\sigma = \iint_D axd\sigma + \iint_D byd\sigma + \iint_D cd\sigma = aS_D \overline{x} + bS_D \overline{y} + cS_D$$

证明 $\iint_D (ax+by+c) d\sigma = \iint_D axd\sigma + \iint_D byd\sigma + \iint_D cd\sigma = aS_D\overline{x} + bS_D\overline{y} + cS_D$ 则对于曲面积分: $\iint_S (ax+by+cz+d) dS = (a\overline{x}+b\overline{y}+c\overline{z}+d) \cdot S$,其中: $(\overline{x},\overline{y},\overline{z})$ 是曲面 Σ 的形心坐标, S 是曲面 Σ 的表面积, f(x, y, z) = ax + by + cz + d 是线性函数[5] [6]。

3. 示例

问题: 设
$$\Sigma$$
是 $x^2+y^2+z^2=2ax$, 计算曲面积分 $\iint_{\Sigma} (x^2+y^2+z^2) dS$ 。

解法一(常规积分)

$$\iint_{\Sigma} (x^{2} + y^{2} + z^{2}) dS = \iint_{\Sigma} (2ax) dS$$

$$= 2 \iint_{x^{2} + y^{2} \le 2ax} 2ax \sqrt{1 + z_{x}^{2} + z_{y}^{2}} dxdy$$

$$= 2 \iint_{x^{2} + y^{2} \le 2ax} 2ax \sqrt{1 + \left(\frac{a - x}{\sqrt{2ax - x^{2} - y^{2}}}\right)^{2} + \left(\frac{a - y}{\sqrt{2ax - x^{2} - y^{2}}}\right)^{2}} dxdy$$

$$= 2 \iint_{x^{2} + y^{2} \le 2ax} 2ax \sqrt{\frac{2a^{2} - 2ay}{2ax - x^{2} - y^{2}}} dxdy$$

此积分难以计算。

解法二(利用形心坐标)

$$\iint_{\Sigma} (x^2 + y^2 + z^2) dS = \iint_{\Sigma} (2ax) dS = 2a\overline{x}S = 2a \cdot a \cdot 4\pi a^2 = 8\pi a^4,$$

其中球面 $x^2 + y^2 + z^2 = 2ax$ 的形心坐标 $\overline{x} = a$, S 为球面表面积,则 $S = 4\pi a^2$ 。 显然解法二更加容易。

4. 结论

利用形心坐标计算线性函数的积分,只需要知道形心坐标和面积/表面积,将形心坐标代入线性函数再乘以面积/表面积即可得到积分结果,避免了繁琐的积分运算,极大地简化了过程。

参考文献

- [1] 孙爱民, 沈璐璐. 高等数学[M]. 北京: 人民邮电出版社: 2024: 157.
- [2] 严亚强. 利用形心坐标计算一类重积分和线面积分[J]. 高等数学研究, 2019, 22(2): 28-29+41.
- [3] 李玲, 胡学刚. 二重积分的若干计算技巧[J]. 高师理科学刊, 2014, 34(1): 4.
- [4] 张辉, 李应岐, 敬斌, 等. 谈二重积分的计算方法[J]. 商丘职业技术学院学报, 2015, 14(2): 5-7.
- [5] 杨德彬. 二重积分一题多解的方法总结[J]. 理科爱好者(教育教学), 2020(6): 14-15.
- [6] 陈贤峰. 关于几何体形心坐标的注记[J]. 大学数学, 2020, 36(6): 46-50.