一类拟线性薛定谔方程Robin边值问题变号解 的存在性

邓音

上海出版印刷高等专科学校,基础教学部,上海

收稿日期: 2025年9月19日; 录用日期: 2025年10月15日; 发布日期: 2025年10月28日

摘要

本文研究一类拟线性薛定谔方程Robin边值问题。通过Nehari流形方法和形变引理等,得到方程存在只变号一次的光滑变号解。

关键词

拟线性薛定谔方程,Robin边值,Nehari流形,变号解

Existence of Nodal Solutions for a Class of Quasilinear Schrödinger Equations with Robin Boundary Condition

Yin Deng

Department of Foundational Teaching, Shanghai Publishing and Printing College, Shanghai

Received: September 19, 2025; accepted: October 15, 2025; published: October 28, 2025

Abstract

We consider a quasilinear Schrödinger equation with Robin boundary condition. By using the Nehari manifold method and deformation lemma, we establish the existence of smooth nodal solutions that change sign exactly once.

Keywords

Quasilinear Schrödinger Equation, Robin Boundary, Nehari Manifold, Nodal Solutions

Copyright © 2025 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/

1. 引言

拟线性薛定谔方程是一类重要的非线性偏微分方程,在等离子体物理、流体力学等领域被广泛用作刻画复杂物理现象的基本模型[1]-[3]。其解通常对应于系统的不同量子态:基态解反映系统的最低能量状态,而变号解则描述激发态。另一方面,Robin 边界条件作为一类广义边界条件,在热传导和粒子物理等实际问题中具有明确的物理背景。因此,研究带有 Robin 边界条件的拟线性薛定谔方程变号解的存在性及其性质,不仅具有重要的理论价值,也为理解相关物理过程提供了有力支撑。

本文考虑如下拟线性薛定谔方程 Robin 边值问题变号解的存在性:

$$\begin{cases} -\Delta u - \Delta (u^2) u = f(x, u), & x \in \Omega, \\ \frac{\partial u}{\partial n} + \beta (x) u = 0, & x \in \partial \Omega, \end{cases}$$
(1.1)

其中Ω 是 $\mathbb{R}^N(N \ge 3)$ 中具有光滑边界的有界区域, $\frac{\partial u}{\partial n} = \nabla u \cdot n(x)$, n(x) 是 $\partial \Omega$ 上的单位外法向量,

$$\beta(x) \in C^{0,\tau}(\partial\Omega)$$
, $\tau \in (0,1)$, 对任意的 $x \in \partial\Omega$, $\beta(x) \ge 0$, 且 $\beta(x) \ne 0$ 。

在过去几十年里,拟线性薛定谔方程解的存在性及相关性质得到了广泛研究[4]-[13]。如 Liu 等[10]研究了全空间 \mathbb{R}^N 上的一类拟线性薛定谔方程,运用 Nehari 流形方法证明了基态解和变号解的存在性。Deng 等[11]研究了如下拟线性薛定谔方程的 Robin 边值问题:

$$\begin{cases} -\Delta u - \Delta (u^2) u + a(x) u = \lambda f(x, u), & x \in \Omega, \\ \frac{\partial u}{\partial n} + \beta (x) u = 0, & x \in \partial \Omega, \end{cases}$$
(1.2)

其中 $\lambda>0$,对任意的 $x\in\partial\Omega$, $\beta(x)\geq0$ 。利用变分法和截断技巧证明了存在参数 $\lambda^*>0$,当 $\lambda>\lambda^*$ 时,问题(1.2)至少存在两个光滑正解。

受以上研究启发,本文拟利用 Nehari 流形和变分方法探讨问题(1.1)变号解的存在性。

首先, 假设非线性项 f(x,t)满足条件 H(f):

 $f(x,t): \Omega \times \mathbb{R} \to \mathbb{R}$ 为 Carathéodory 函数, f(x,0)=0 , $a.e. x \in \Omega$,且

 (f_1) 存在 $c_0 > 0$ 和 $4 < r < 2 \cdot 2^*$, 使得

$$|f(x,t)| \le c_0 (1+|t|^{r-1}), \quad a.e. \ x \in \Omega, \quad \forall \ t \in \mathbb{R};$$

$$(f_2)$$
 $\lim_{|t|\to +\infty} \frac{F(x,t)}{t^4} = +\infty$,对 $a.e.$ $x \in \Omega$ 一致成立,其中 $F(x,t) = \int_0^t f(x,s) ds$;

$$(f_3)$$
 $\lim_{t\to 0} \frac{f(x,t)}{t} = 0$,对 a.e. $x \in \Omega$ 一致成立;

$$(f_4)$$
 对 $a.e. x \in \Omega$,函数 $t \mapsto \frac{f(x,t)}{|t|^3}$ 在 $(-\infty,0) \cup (0,+\infty)$ 上严格单调递增。

注记 1.1 对任意的 $t \in \mathbb{R}$,令

$$f(t) = |t|^{q-2} t,$$

当 $4 < q < 2 \cdot 2^*$ 时,f(t)满足条件H(f)。

本文的主要结果如下:

定理 1.1 假设条件 H(f) 成立,则问题(1.1)至少存在一个变号解 $u_0 \in C^1(\overline{\Omega})$; 进一步,若 f(x,t) 还满足

$$f(x,t)t - 8F(x,t) > 0$$
, a.e. $x \in \Omega$, $t \neq 0$, (1.3)

那么, u_0 只变号一次。

2. 预备知识

问题(1.1)对应的能量泛函为

$$I(u) = \frac{1}{2} \left(\int_{\Omega} |\nabla u|^2 (1 + 2u^2) dx + \int_{\partial \Omega} \beta(x) u^2 (1 + u^2) d\sigma \right) - \int_{\Omega} F(x, u) dx.$$

然而,由于 $\int_{\Omega} |\nabla u|^2 u^2 dx$ 和 $\int_{\partial\Omega} \beta(x) u^4 d\sigma$ 的存在,使得当 $N \ge 3$ 时,泛函I在 $H^1(\Omega)$ 中不是良定义的。

为了克服这一困难,一方面,借鉴文[1]中的思想,作变量替换u=g(v),其中g是常微分方程

$$\begin{cases} g'(t) = \frac{1}{\sqrt{1 + 2g^{2}(t)}}, & t \in [0, +\infty), \\ g(t) = -g(-t), & t \in (-\infty, 0] \end{cases}$$
 (2.1)

的唯一解。

下面给出变换函数g的一些重要性质。

引理 2.1 [4]函数 g 及其导数 g'(t) 满足下列性质:

- (1) 函数 g 是唯一确定的、可逆的, 并且 $g \in C^2$;
- (2) 对任意的 $t \in \mathbb{R}$, 有 $|g'(t)| \le 1$;
- (3) 对任意的 $t \in \mathbb{R}$, 有 $g(t) \le |t|$;
- (4) 当 $t \rightarrow 0$ 时,有 $\frac{g(t)}{t} \rightarrow 1$;
- (5) 对任意的 $t \in \mathbb{R}$,有 $|g(t)| \le 2^{\frac{1}{4}} |t|^{\frac{1}{2}}$;
- (6) 对任意的t > 0,有 $\frac{1}{2}g(t) \le tg'(t) \le g(t)$;
- (7) $ext{$\pm t \to +\infty$ bt, } ext{f} \frac{g(t)}{\sqrt{t}} \to 2^{\frac{1}{4}};$
- (8) 对任意的 $t \in \mathbb{R}$,有 $|g(t)g'(t)| \le \frac{1}{\sqrt{2}}$;
- (9) 存在常数 $C_1 > 0$, 使得

$$|g(t)| \ge \begin{cases} C_1 |t|, & |t| \le 1, \\ C_1 |t|^{\frac{1}{2}}, & |t| \ge 1. \end{cases}$$

通过变量替换u = g(v), 泛函I(u) 可以改写为

$$J(v) = \frac{1}{2} \int_{\Omega} |\nabla v|^2 dx + \frac{1}{2} \int_{\partial \Omega} \beta(x) g^2(v) (1 + g^2(v)) d\sigma - \int_{\Omega} F(x, g(v)) dx.$$
 (2.2)

另一方面,引入在处理 Robin 边界条件时起到关键作用的引理。

引理 2.2 [14]设 Ω 是有界区域,且 $\partial \Omega \in C^1$,则存在有界线性算子

$$\gamma_0: H^1(\Omega) \to L^2(\partial\Omega)$$
,

使得

- (i) $\gamma_0 u = u|_{\partial\Omega}$, $u \in H^1(\Omega) \cap C(\overline{\Omega})$;
- (ii) $\|\gamma_0 u\|_{L^2(\Omega)} \le C \|u\|_{H^1(\Omega)}$, 其中 C 是和 Ω 有关的常数。

由引理 2.1 和引理 2.2 知,泛函 J(v) 在 $H^1(\Omega)$ 中良定义,且在假设条件 H(f) 下, $J \in C^1(H^1(\Omega), \mathbb{R})$ 。因此,对任意的 $v, \varphi \in H^1(\Omega)$,有

$$J'(v)\varphi = \int_{\Omega} \nabla v \nabla \varphi dx + \int_{\partial \Omega} \beta(x)g(v)g'(v)(1+2g^2(v))\varphi d\sigma - \int_{\Omega} f(x,g(v))g'(v)\varphi dx.$$

即泛函J的临界点是下列半线性方程的弱解

$$\begin{cases} -\Delta v = f(x, g(v))g'(v), & x \in \Omega, \\ \frac{\partial v}{\partial n} + \beta(x)g(v)g'(v)(1 + 2g^2(v)) = 0, & x \in \partial\Omega. \end{cases}$$
(2.3)

为了得到方程(1.1)的解,不妨先寻找方程(2.3)的解,也就是说,寻找泛函J的临界点。

接下来,给出函数 g 的一些其他相关性质。

引理 2.3 [9]函数 g 满足下面的性质:

- (1) 当t > 0 时,函数 $g(t)g'(t)t^{-1}$ 严格单调递减;
- (2) 当t > 0, $p \ge 3$ 时, 函数 $g^p(t)g'(t)t^{-1}$ 严格单调递增。

此外,根据引理 2.1 和引理 2.2,有下面的等价性结果。

引理 2.4 设 $\beta(x) \ge 0$,且 $\beta(x) \ne 0$,则存常数 $c_1, c_2 > 0$ 和,使得对任意的 $v \in H^1(\Omega)$,有

$$c_{1} \|v\|^{2} \leq \int_{\Omega} |\nabla v|^{2} dx + \int_{\partial \Omega} \beta(x) g^{2}(v) (1 + g^{2}(v)) d\sigma \leq c_{2} \|v\|^{2}.$$
(2.4)

证明 由引理 2.1 中(9)知,存在常数 C' > 0,使得

$$\int_{\partial\Omega} \beta(x) g^{2}(v) (1+g^{2}(v)) d\sigma$$

$$\geq C' \int_{\{x \in \partial\Omega \mid v(x) \mid \leq 1\}} \beta(x) (v^{2}+v^{4}) d\sigma + C' \int_{\{x \in \partial\Omega \mid v(x) \mid > 1\}} \beta(x) (|v|+v^{2}) d\sigma$$

$$\geq C' \int_{\partial\Omega} \beta(x) v^{2} d\sigma. \tag{2.5}$$

下面证明:存在 $c_1 > 0$,使得

$$c_1 \|v\|^2 \le \|\nabla v\|_2^2 + C' \int_{\partial\Omega} \beta(x) v^2 d\sigma$$
. (2.6)

反证法。假设存在序列 $\{v_n\}_{n\geq 1}\subseteq H^1(\Omega)$,使得对任意的 $n\geq 1$,有

$$\left\|\nabla v_n\right\|_2^2 + C_1 \int_{\partial\Omega} \beta(x) v_n^2 d\sigma < \frac{1}{n} \left\|v_n\right\|^2.$$

设 $y_n = \frac{v_n}{\|v_n\|}$ $(n \ge 1)$,那么

$$\left\|\nabla y_{n}\right\|_{2}^{2} + C' \int_{\partial\Omega} \beta(x) y_{n}^{2} d\sigma < \frac{1}{n}.$$
(2.7)

因为 $||y_n||=1$,故存在 $y \in H^1(\Omega)$,使得

$$y_n \to y \mp H^1(\Omega);$$

 $y_n \to y \mp L^2(\Omega);$
 $y_n \to y \mp L^2(\partial\Omega).$

在(2.7)中令 $n \rightarrow +\infty$,有

$$\|\nabla y\|_2^2 + C' \int_{\partial \Omega} \beta(x) y^2 d\sigma \le 0.$$

因为 $\beta(x) \ge 0$,故 $y = c \in \mathbb{R}$,从而

$$cC' \int_{\partial \Omega} \beta(x) y^2 d\sigma \le 0.$$

又因为 $\beta(x) \neq 0$,可得 c = 0,从而 $y_n \to 0$ 于 $H^1(\Omega)$,与 $\|y_n\| = 1$ 矛盾。因此,由(2.5)和(2.6)知,存在 $c_1 > 0$,使得(2.4)中第一个不等式成立。

通过引理 2.1 中(3) (5)以及引理 2.2, 可得

$$\begin{split} & \int_{\Omega} \left| \nabla v \right|^{2} dx + \int_{\partial \Omega} \beta(x) g^{2}(v) (1 + g^{2}(v)) d\sigma \\ & \leq \int_{\Omega} \left| \nabla v \right|^{2} dx + 3 \int_{\partial \Omega} \beta(x) v^{2} d\sigma \\ & \leq \int_{\Omega} \left| \nabla v \right|^{2} dx + 3 S' \left\| \beta(x) \right\|_{L^{\infty}(\partial \Omega)} \left\| v \right\|^{2} \\ & \leq \max \left\{ 1, 3 S' \left\| \beta(x) \right\|_{L^{\infty}(\partial \Omega)} \right\} \left\| v \right\|^{2}, \end{split}$$

其中 S' > 0 是迹嵌入常数。于是,取 $c_2 = \max \left\{ 1, 3S' \left\| \beta(x) \right\|_{L^{\infty}(\partial \Omega)} \right\}$,则引理得证。

3. 主要结果的证明

首先,定义 Nehari 流形

$$\mathcal{N} = \left\{ v \in H^1(\Omega) : \left\langle J'(v), v \right\rangle = 0, v \neq 0 \right\}.$$

注意到,方程(2.3)的任意非平凡解都包含于 N 。为了寻找方程(2.3)的变号解,还需引入 Nehari 子流形

$$\mathcal{N}_0 = \left\{ v \in H^1(\Omega) \colon v^+ \in \mathcal{N}, -v^- \in \mathcal{N} \right\}.$$

引理 3.1 假设条件 H(f) 成立。若 $v \in H^1(\Omega)$, $v \neq 0$,则存在唯一 $t_v > 0$,使得 $t_v v \in \mathcal{N}$ 。此外, $J(t_v v) = \max_{t > 0} J(t v)$ 。

证明 由条件(f_1)和(f_2),对任意的 $\varepsilon > 0$,存在 $c_3 = c_3(\varepsilon) > 0$,使得

$$F(x,t) \le \frac{\varepsilon}{2} |t|^2 + c_3 |t|^r$$
, a.e. $x \in \Omega$.

结合引理 2.1 中(3) (5), $\forall v \in H^1(\Omega)$, 有

$$F(x,g(v)) \le \frac{\varepsilon}{2} |g(v)|^2 + c_3 |g(v)|^r$$

$$\le \frac{\varepsilon}{2} |v|^2 + c_3 |v|^{\frac{r}{2}},$$
(3.1)

故 $F(x,g(v)) \in L^1(\Omega)$ 。

定义 $\gamma(t)=J(tv)$, t>0。一方面,根据引理 2.1 中(4)、(2.4)、(f_3)和 Lebesgue 控制收敛定理,当 $t\to 0^+$ 时,有

$$\frac{\gamma(t)}{t^{2}} = \frac{1}{2} \int_{\Omega} \left| \nabla(tv) \right|^{2} dx + \frac{1}{2} \int_{\partial\Omega} \beta(x) g^{2}(tv) \left(1 + g^{2}(tv) \right) d\sigma - \int_{\Omega} F(x, g(tv)) dx$$

$$\geq \frac{c_{1}}{2} \left\| v \right\|^{2} - \int_{\Omega} \frac{F(x, g(tv))}{g^{2}(tv)} \frac{g^{2}(tv)}{(tv)^{2}} v^{2} dx$$

$$\rightarrow \frac{c_{1}}{2} \left\| v \right\|^{2}.$$

因此, 当t > 0 充分小时, 有 $\gamma(t) > 0$ 。

另一方面,由引理 2.1 中(7)、(2.4)、(f_2)和 Lebesgue 控制收敛定理,当 $t \to +\infty$ 时,有

$$\gamma(t) = \frac{1}{2} \int_{\Omega} \left| \nabla(tv) \right|^{2} dx + \frac{1}{2} \int_{\partial\Omega} \beta(x) g^{2}(tv) \left(1 + g^{2}(tv) \right) d\sigma - \int_{\Omega} F(x, g(tv)) dx$$

$$\leq \frac{c_{2}}{2} t^{2} \left\| v \right\|^{2} - t^{2} \int_{\Omega} \frac{F(x, g(tv))}{g^{4}(tv)} \frac{g^{4}(tv)}{(tv)^{2}} v^{2} dx$$

$$\rightarrow -\infty.$$

从而, γ存在正最大值。

此外, $\gamma'(t)=0$ 意味着

$$\int_{\Omega} |\nabla v|^2 dx = \int_{\Omega} \frac{f(x,g(tv))g'(tv)}{tv} v^2 dx - \int_{\partial\Omega} \beta(x) \frac{g(tv)g'(tv)}{tv} (1 + 2g^2(tv)) v^2 d\sigma.$$

由g的定义知,g是奇函数并且在 \mathbb{R} 上严格单调递增。利用条件(f_4)和引理 2.1 可得,当 $s \neq 0$ 时,函数

$$\frac{f(x,g(s))g'(s)}{s} = \frac{f(x,g(s))}{|g(s)|^3} \frac{|g(s)|^3 g'(s)}{s}$$

关于s严格单调递增;函数

$$\frac{g(s)g'(s)}{s}\left(1+2g^2(s)\right)$$

关于 s 严格单调递减。因此,存在唯一的 $t_v > 0$,使得 $\gamma'(t_v) = 0$ 。又因为 $\gamma'(t) = t^{-1} \langle J'(tv), tv \rangle$,所以引理得证。

定义

$$m = \inf_{v \in \mathcal{N}} J(v)$$
, $m_0 = \inf_{v \in \mathcal{N}_0} J(v)$.

引理 3.2 假设条件 H(f) 成立,则 m>0,且 $m_0 \ge 2m>0$ 。

证明 利用(2.4)、(3.1)和 Sobolev 嵌入定理,对任意 $v \in H^1(\Omega)$,有

$$J(v) = \frac{1}{2} \int_{\Omega} |\nabla v|^2 dx + \frac{1}{2} \int_{\partial \Omega} \beta(x) g^2(v) (1 + g^2(v)) d\sigma - \int_{\Omega} F(x, g(v)) dx$$

$$\geq \frac{c_1}{2} ||v||^2 - \frac{\varepsilon}{2} ||v||_2^2 - c_3 ||v||_{\frac{r}{2}}^{\frac{r}{2}}$$

$$\geq \frac{c_1 - \varepsilon}{2} ||v||^2 - c_4 ||v||_{\frac{r}{2}}^{\frac{r}{2}}.$$

因为r>4,在上式中取 $\varepsilon = \frac{c_1}{2}$ 和 $||v|| = \rho$ 充分小,可得

$$J(v) \ge \rho_0 > 0,$$

其中
$$\rho_0 = \frac{c_1}{4} \rho^2 - c_4 \rho^{\frac{r}{2}}$$
。

设 $v \in \mathcal{N}$,取 $t_1 > 0$,使得 $||t_1v|| = \rho$ 。由引理 3.1 可得,对任意的 $v \in \mathcal{N}$,有 $J(v) \ge J(t_1v) \ge \rho_0 > 0$.

因此, m > 0。

因为对每一个 $v \in \mathcal{N}_0$,都有 $v^+, -v^- \in \mathcal{N}$,所以

$$J(v) = J(v^+) + J(-v^-) \ge 2m > 0, \quad \forall \ v \in \mathcal{N}_0,$$

 $\exists \mathbb{P} \ m_0 \geq 2m > 0 \ .$

引理 3.3 假设条件 H(f) 成立,则 m_0 可达,即存在 $v_0 \in \mathcal{N}_0$,使得 $J(v_0) = m_0$ 。 证明 假设序列 $\{v_n\}_{n\geq 1} \subseteq \mathcal{N}_0$ 满足

$$J(v_n) \to m_0, n \to \infty$$
.

首先,证明 $\{v_n\}_{n\geq 1}$ 在 $H^1(\Omega)$ 中有界。反证法,假设当 $n\to +\infty$ 时,有

$$||v_n|| \to +\infty$$
.

令 $w_n = \frac{v_n}{\|v_n\|}$ $(n \ge 1)$,则 $\|w_n\| = 1$ 。 因此, $\{w_n\}_{n \ge 1}$ 存在子列,仍记为 $\{w_n\}_{n \ge 1}$,使得

$$w_{n} \rightarrow w \mp H^{1}(\Omega);$$

$$w_{n} \rightarrow w \mp L^{p}(\Omega), p \in (1, 2^{*});$$

$$w_{n} \rightarrow w \mp L^{2}(\partial \Omega).$$
(3.2)

若w=0。利用(3.1)和(3.2),对任意的 $\tau>0$,有

$$\limsup_{n \to \infty} \int_{\Omega} F(x, g(\tau w_n)) dx \le \lim_{n \to \infty} \left[\frac{\varepsilon}{2} \tau^2 \|w_n\|_2^2 - c_3 \tau^{\frac{r}{2}} \|w_n\|_{\frac{r}{2}}^{\frac{r}{2}} \right] = 0.$$
 (3.3)

令 $t_n = \frac{\tau}{\|v_n\|}$ 。 因为 $v_n \in \mathcal{N}_0 \subseteq \mathcal{N}$,结合(2.4)、(3.3)和引理 3.1,可得

$$m_{0} + o(1) = J(v_{n})$$

$$\geq J(t_{n}v_{n})$$

$$= \frac{1}{2} \int_{\Omega} |\nabla t_{n}v_{n}|^{2} dx + \frac{1}{2} \int_{\partial\Omega} \beta(x) g^{2}(t_{n}v_{n}) (1 + g^{2}(t_{n}v_{n})) d\sigma$$

$$- \int_{\Omega} F(x, g(t_{n}v_{n})) dx$$

$$\geq \frac{c_{1}}{2} t_{n}^{2} ||v_{n}||^{2} - \int_{\Omega} F(x, g(\tau w_{n})) dx$$

$$\geq \frac{c_{1}}{2} \tau^{2} + o(1).$$

因为 $\tau > 0$ 是任意的,得出矛盾。若 $w \neq 0$ 。记 $\Omega_+ = \{x \in \Omega: w(x) \neq 0\}$,则 $|\Omega_+|_N > 0$,且 $|v_n(x)| \to +\infty \quad (n \to +\infty), \quad a.e. \ x \in \Omega_+.$

因此,根据条件(f_2)、Fatou 引理和引理 2.1 中(7),有

$$\liminf_{n \to +\infty} \int_{\Omega} \frac{F\left(x, g\left(v_{n}\right)\right)}{v_{n}^{2}} dx \ge \int_{\Omega_{+}} \liminf_{n \to +\infty} \frac{F\left(x, g\left(v_{n}\right)\right)}{g^{4}\left(v_{n}\right)} \frac{g^{4}\left(v_{n}\right)}{v_{n}^{2}} dx = +\infty.$$

结合(2.4), 可得,

$$0 = \lim_{n \to +\infty} \frac{m_0 + o(1)}{\|v_n\|^2}$$

$$= \lim_{n \to +\infty} \frac{J(v_n)}{\|v_n\|^2}$$

$$\leq \frac{c_2}{2} \|w_n\|^2 - \liminf_{n \to +\infty} \int_{\Omega} \frac{F(x, g(v_n))}{v_n^2} w_n^2 dx$$

$$= -\infty,$$

得出矛盾。因此, $\{v_n\}_{n\geq 1}$ 在 $H^1(\Omega)$ 中有界,从而存在子列,仍记为 $\{v_n\}_{n\geq 1}$,使得

$$v_n^{\pm} \longrightarrow v_0^{\pm} + H^1(\Omega);$$

$$v_n^{\pm} \longrightarrow v_0^{\pm} + L^p(\Omega), p \in (1, 2^*);$$

$$v_n^{\pm} \longrightarrow v_0^{\pm} + L^2(\partial\Omega).$$
(3.4)

断言: $v_0^{\pm} \neq 0$ 。反证法。假设 $v_0^{+} \equiv 0$,因为 $v_n^{+} \in \mathcal{N}$,故

$$0 = \left\langle J'\left(v_n^+\right), v_n^+\right\rangle$$

$$= \left\|\nabla v_n^+\right\|_2^2 + \int_{\partial\Omega} \beta(x) g(v_n^+) g'(v_n^+) \left(1 + 2g^2(v_n^+)\right) v_n^+ d\sigma$$

$$- \int_{\Omega} f(x, g(v_n^+)) g'(v_n^+) v_n^+ dx.$$

对上式取极限,利用(3.4),有 $\lim_{n\to+\infty} \|\nabla v_n^+\|_2^2 = 0$,即得 $v_n^+ \to 0$ 于 $H^1(\Omega)$ 。那么, $J(v_n^+) \to 0$, $n \to \infty$,这与 $m_0 > 0$ 矛盾。因此, $v_0^+ \neq 0$ 。同理可得, $v_0^- \neq 0$ 。

根据引理 3.1 知,存在 $s_0, t_0 > 0$,使得

$$v_0 = s_0 v_0^+ - t_0 v_0^- \in \mathcal{N}_0$$
.

再次利用引理 3.1 以及泛函J 的弱下半连续性,有

$$\begin{split} m_0 &= \lim_{n \to +\infty} J\left(v_n\right) \\ &= \lim_{n \to +\infty} \left[J\left(v_n^+\right) + J\left(-v_n^-\right) \right] \\ &\geq \liminf_{n \to +\infty} \left[J\left(s_0v_n^+\right) + J\left(-t_0v_n^-\right) \right] \\ &\geq J\left(s_0v_0^+\right) + J\left(-t_0v_0^-\right) \\ &= J\left(v_0\right) \\ &\geq m_0. \end{split}$$

于是, $J(v_0) = m_0$, 即 m_0 可达。

引理 3.4 假设条件 H(f) 成立。若 $v_0 \in \mathcal{N}_0$ 满足 $J(v_0) = m_0$,则 $v_0 \in H^1(\Omega)$ 是泛函 J 的临界点,且 $v_0 \in C^1(\bar{\Omega})$ 。

证明 反证法。假设 $J'(v_0) \neq 0$,则存在 $\theta > 0$ 和 $\delta > 0$,当 $||v - v_0|| \leq 3\delta$ 时,有

$$||J'(v_0)|| \ge \theta$$
.

因为 $v_0 \in \mathcal{N}_0$,故

$$\left\langle J'\left(v_0^+\right), v_0^+\right\rangle = 0 ,$$

$$\left\langle J'\left(-v_0^-\right), -v_0^-\right\rangle = 0 .$$

根据引理 3.1,对任意 s,t>0,且 $s,t\neq 1$,成立

$$J(sv_0^+ - tv_0^-) = J(sv_0^+) + J(-tv_0^-)$$

$$< J(v_0^+) + J(-v_0^-)$$

$$= J(v_0)$$

$$= m_0.$$
(3.5)

$$\diamondsuit D = \left(\frac{1}{2}, \frac{3}{2}\right) \times \left(\frac{1}{2}, \frac{3}{2}\right)$$
。由(3.5)知,

$$J(sv_0^+ - tv_0^-) = m_0$$
 当且仅当 $s = t = 1$.

因此,

$$l = \max_{(s,t) \in \partial D} J(sv_0^+ - tv_0^-) < m_0.$$

取 $\varepsilon = \min \left\{ \frac{m_0 - l}{2}, \frac{\theta \delta}{8} \right\}$, 定义集合

$$S = B_{\delta}(v_0) = \{v_0 \in H^1(\Omega) : ||v - v_0|| \le \delta\}.$$

根据形变引理[15],存在连续的形变 η :[0,1] $\to H^1(\Omega)$,且具有如下性质:

(i)
$$\eta(1,v) = v$$
, $v \notin J^{-1}([m_0 - 2\varepsilon, m_0 + 2\varepsilon]) \cap S_{2\delta}$;

(ii)
$$\eta(1,J^{m_0+\varepsilon}\cap S)\subset J^{m_0-\varepsilon}$$
;

(iii)
$$J(\eta(1,v)) \leq J(v)$$
.

不难看出,

$$\max_{(s,t) \in \bar{D}} J\left(\eta\left(1, sv_0^+ - tv_0^-\right)\right) < m_0. \tag{3.6}$$

定义 $h(s,t) = \eta(1,sv_0^+ - tv_0^-)$ 以及

$$\begin{split} H_1\!\left(s,t\right) &= \!\left(\!\left\langle J'\!\left(sv_0^+\right), v_0^+\right\rangle, \left\langle J'\!\left(-tv_0^-\right), -v_0^-\right\rangle\right), \\ H_2\!\left(s,t\right) &= \!\left(\frac{1}{s}\!\left\langle J'\!\left(h^+\left(s,t\right)\right), h^+\left(s,t\right)\right\rangle, \frac{1}{t}\!\left\langle J'\!\left(-h^-\left(s,t\right)\right), -h^-\left(s,t\right)\right\rangle\right). \end{split}$$

因为

$$\left\langle J' \left(s v_0^+ \right), v_0^+ \right\rangle > 0 \; , \; \; \left\langle J' \left(- s v_0^- \right), - v_0^- \right\rangle > 0 \; , \; \; 0 < s < 1 \; ;$$

$$\left\langle J' \left(s v_0^+ \right), v_0^+ \right\rangle < 0 \; , \; \; \left\langle J' \left(- s v_0^- \right), - v_0^- \right\rangle < 0 \; , \; \; s > 1 \; ,$$

所以 $deg(H_1,D,0)=1$ 。根据性质(i)和(3.6)可得,对任意的 $(s,t)\in\partial D$,有

$$h(s,t) = sv_0^+ - tv_0^-$$
.

因此, $deg(H_1,D,0) = deg(H_2,D,0) = 1$ 。 那么,存在 $(s_0,t_0) \in D$,使得 $H_2(s_0,t_0) = 0$,

这意味着

$$\eta(1, s_0 v_0^+ - t_0 v_0^-) = h(s_0, t_0) \in \mathcal{N}_0$$

与(3.6)矛盾。即证明了 v_0 是泛函J的临界点。

最后,由文[16]知, $v_0 \in C^1(\overline{\Omega})$ 。

定理 1.1 的证明 引理 3.4 表明 v_0 是方程(2.3)的变号解,且 $v_0 \in C^1(\bar{\Omega})$ 。

下面证明 v_0 只变号一次。假设 $v_0=v_1+v_2+v_3$, $\Omega_1=\left\{x\in\Omega:v_1(x)>0\right\}$ 和 $\Omega_2=\left\{x\in\Omega:v_2(x)<0\right\}$ 都是 Ω 的连通开子集, $\Omega_1\cap\Omega_2=\emptyset$,且

$$\begin{aligned} v_1\big|_{\Omega\setminus\Omega_1} &= v_2\big|_{\Omega\setminus\Omega_2} = v_3\big|_{\Omega_1\cup\Omega_2} = 0 \ . \end{aligned}$$
 令 $z = v_1 + v_2$, 则 $z^+ = v_1$, $z^- = -v_2$, 且 $z^\pm \not\equiv 0$ 。 因为 $J'(v_0) = 0$, 故
$$\left\langle J'(z), z^+ \right\rangle = \left\langle J'(z), z^- \right\rangle = 0 \ ,$$

即 $z^+, -z^- \in \mathcal{N}$, $z \in \mathcal{N}_0$ 。利用引理 2.1 中(6),有

$$\begin{split} & m_0 = J(v_0) \\ & = J(v_0) - \frac{1}{4} \langle J'(v_0), v_0 \rangle \\ & = J(z) + J(v_3) - \frac{1}{4} \Big[\langle J'(z), z \rangle + \langle J'(v_3), v_3 \rangle \Big] \\ & \geq m_0 + J(v_3) - \frac{1}{4} \langle J'(v_3), v_3 \rangle \\ & \geq m_0 + \int_{\Omega} \Big[\frac{1}{8} f(x, g(v_3)) g(v_3) - F(x, g(v_3)) \Big] \mathrm{d}x. \end{split}$$

由(1.3)得, $v_3 = 0$,因此 v_0 只变号一次。

最后,令 $u_0 = g(v_0)$,则 u_0 是问题(1.1)的解。因函数 g 在 \mathbb{R} 上严格单调递增且光滑,故 u_0 是问题(1.1)的变号解,且 $u_0 \in C^1(\overline{\Omega})$ 。同理, u_0 只变号一次,即证明了定理 1.1。

基金项目

上海出版印刷高等专科学校高层次人才科研启动基金项目(2024RCKY10)。

参考文献

- [1] Porkolab, M. and Goldman, M.V. (1976) Upper-Hybrid Solitons and Oscillating-Two-Stream Instabilities. *The Physics of Fluids*, **19**, 872-881. https://doi.org/10.1063/1.861553
- [2] Laedke, E.W., Spatschek, K.H. and Stenflo, L. (1983) Evolution Theorem for a Class of Perturbed Envelope Soliton Solutions. *Journal of Mathematical Physics*, 24, 2764-2769. https://doi.org/10.1063/1.525675
- [3] Kurihara, S. (1981) Large-Amplitude Quasi-Solitons in Superfluid Films. *Journal of the Physical Society of Japan*, 50, 3262-3267. https://doi.org/10.1143/jpsj.50.3262
- [4] Colin, M. and Jeanjean, L. (2004) Solutions for a Quasilinear Schrödinger Equation: A Dual Approach. *Nonlinear Analysis: Theory, Methods & Applications*, **56**, 213-226. https://doi.org/10.1016/j.na.2003.09.008
- [5] Moameni, A. and Offin, D.C. (2010) Positive Solutions for Singular Quasilinear Schrödinger Equations with One Parameter, II. *Journal of Partial Differential Equations*, **23**, 222-234.
- [6] Figueiredo, G.M., Santos Júnior, J.R. and Suárez, A. (2018) Structure of the Set of Positive Solutions of a Non-Linear

- Schrödinger Equation. Israel Journal of Mathematics, 227, 485-505. https://doi.org/10.1007/s11856-018-1752-7
- [7] dos Santos, G., Figueiredo, G.M. and Severo, U.B. (2019) Multiple Solutions for a Class of Singular Quasilinear Problems. *Journal of Mathematical Analysis and Applications*, 480, Article 123405. https://doi.org/10.1016/j.jmaa.2019.123405
- [8] Figueiredo, G.M., Ruviaro, R. and Junior, J.C.O. (2020) Quasilinear Equations Involving Critical Exponent and Concave Nonlinearity at the Origin. *Milan Journal of Mathematics*, 88, 295-314. https://doi.org/10.1007/s00032-020-00315-6
- [9] Figueiredo, G.M., Severo, U.B. and Siciliano, G. (2020) Multiplicity of Positive Solutions for a Quasilinear Schrödinger Equation with an Almost Critical Nonlinearity. *Advanced Nonlinear Studies*, 20, 933-963. https://doi.org/10.1515/ans-2020-2105
- [10] Liu, J., Wang, Y. and Wang, Z. (2004) Solutions for Quasilinear Schrödinger Equations via the Nehari Method. *Communications in Partial Differential Equations*, **29**, 879-901. https://doi.org/10.1081/pde-120037335
- [11] Deng, Y., Jia, G. and Li, F.L. (2020) Multiple Solutions to a Quasilinear Schrödinger Equation with Robin Boundary Condition. AIMS Mathematics, 5, 3825-3839. https://doi.org/10.3934/math.2020248
- [12] Deng, Y. and Jia, G. (2022) Multiple Solutions for a Quasilinear Schrödinger Equation Involving Critical Hardy-Sobolev Exponent with Robin Boundary Condition. Complex Variables and Elliptic Equations, 67, 2602-2618. https://doi.org/10.1080/17476933.2021.1932850
- [13] 程永宽, 沈尧天. 含参数拟线性薛定谔方程的特征值问题[J]. 数学年刊 A 辑(中文版), 2023, 44(2): 113-120.
- [14] Evans, L.C. (2010) Partial Differential Equations. 2nd Edition, American Mathematical Society.
- [15] Willem, M. (1996) Minimax Theorems. Birkhäuser.
- [16] Lieberman, G.M. (1988) Boundary Regularity for Solutions of Degenerate Elliptic Equations. Nonlinear Analysis: Theory, Methods & Applications, 12, 1203-1219. https://doi.org/10.1016/0362-546x(88)90053-3