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摘  要 

通过“溯源”，建立对抽象的数学概念——极限的直观理解和逻辑认知，从而更好地理解微积分的基石

——极限理论。从三个物理与几何背景问题出发，深入浅出地剖析了数列极限严谨定义的由来，极限概

念的特性、几何解释等，并进一步推广到了对函数极限概念的理解和相关应用中。 
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Abstract 
Through tracing the origin, one can develop an intuitive grasp and logical comprehension of the 
abstract concept of limit, laying a solid foundation for mastering calculus. The paper starts from 
three problems in physical and geometric backgrounds. It makes an in-depth yet accessible analysis 
of the origin of the rigorous definition of the limit of a sequence, the characteristics of limit, its geo-
metric interpretation, and so on. Moreover, it further extends these analyses to the understanding 
of the concept of the limit of a function and relevant applications. 
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1. 引言 

极限理论是微积分学的基石。它给出了微积分的概念，涵括了微积分学研究的对象，以及用相应的

数学语言描述问题、解决问题的基本方法等诸多内容。 
“数学是用来书写宇宙的文字。”对于初学者而言，数学是抽象难懂的，其“难”首先表现在语言不

通，面对众多数学符号而不知所措。伽利略说：“哲学(自然)是写在那本永远在我们眼前的伟大书本里的

(我指的是宇宙)。但是，我们如果不先学会书里所用的语言，掌握书里的符号，就不能了解它。这书是用

数学语言写出来的，符号是三角形、圆形和别的几何图形。没有它们的帮助，是连一个字也不会认识的；

没有它们，人就在一个黑暗的迷宫里劳而无功地游荡着。” 
只有掌握了数学语言——读懂数学符号，才能理解抽象的数学；才能主动学习；才能具备持续学习

的能力；才能用数学去研究问题、解决问题。 
极限概念的学习是微积分学习的开始，它所使用的语言和研究问题的方法将贯穿微积分始终。因此，

学好极限理论是非常重要的[1]。细致剖析并理解极限概念的内涵，才能为后续的理论学习奠定坚实的基

础。 
在学习一个概念时要注意：概念是怎么引入的，它的实际背景是什么；知道了“源”，也就对“流”

有了一个大致的了解。 
极限学习的核心难点在于“无限趋近”的抽象性与“ /Nε ε δ− − ”定义的形式化表达之间的矛盾——

学生往往依赖“直观感受”(如“n 越来越大， na 越来越近 A”)，难以理解定义中“任意 ε 存在 /N δ ”的

量化逻辑。研究表明，多数初学者仅停留在“过程性理解”，难以上升到“对象性理解”[1] [2]，这也是

学生无法灵活运用极限定义、难以证明极限性质的核心原因。近年来，VR 技术开始应用于极限教学，学

生可“沉浸式”观察“无限趋近”过程(如在虚拟空间中观察数列项逐步靠近极限值)，突破传统可视化的

二维局限[3]。“差异化教学”的研究[4]指出，不同认知风格的学生(如视觉型、逻辑型)对极限教学方法

的适应性不同——未来教学可结合可视化工具(适配视觉型)与逻辑推导(适配逻辑型)，实现个性化教学。

结合我国学生“擅长计算但弱于逻辑”的认知特点[5]，弥补了多数研究对“计算型学生”的关注不足，

更贴合国内教学实际。 
本文从三个背景问题的分析、解决方案等入手，逐步引出数列以及数列极限的概念和严格的定义；

进一步分析数列极限概念的可分辨特性和几何意义，数列极限的性质等。该部分内容由浅入深层层剖析，

语言通俗易懂，辅助例子锦上添花，为学习微积分伊始即面临的第一个抽象且难懂的概念——极限的学

习扫除障碍。 

2. 数列极限的概念 

2.1. 数列极限的概念 

背景问题 1：变速直线运动物体的瞬时速度求法。 
做直线运动的物体，设其运动方程为 ( )s s t= ，如何计算物体在给定时刻 0t 的瞬时速度 0v ？ 
问题讨论：先从简单情形入手。 
当物体以均匀的速度 v 作直线运动时， ( )s t vt c= + ，其中 c为初始位移。这种情形下物体在每一时
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刻的速度是不变的，故有 0v v= 。设时间间隔为 t∆ ，我们可以用求平均速度 v 的公式 

0
sv v v
t

∆
= = =

∆
， 

其中 ( ) ( )s s t t s t∆ = + ∆ − ，来求出 0v 。 
一般情形：当物体作非匀速直线运动时，问题在于：运动的物体在每一时刻的速度都是不一样的，

也就不能用上面的平均速度来作为瞬时速度了。 
解决方案：既然 0v 的精确值不易求得，退一步而求其次，先找一个 0v 的近似值，然后再让近似值逐

渐逼近精确值。 
具体做法：先建立一个时间间隔序列{ }nt∆ ，写出相对应的平均速度序列{ }nv 。易见当 0nt∆ → 时，

0nv v→ ，我们可以通过观察{ }nv 的变化趋势求出 0v 或对 0v 有一个较为精确的估计。这种思想是后面要学

习的导数和微分定义的几何体现之一。 
背景问题 2：不规则平面图形(曲边梯形) (图 1)的面积求法。 
问题讨论：对于规则的图形，比如矩形、三角形、梯形等，已经有了计算其面积的公式。这些图形的

共同特点是每一条边都是直边，而曲边梯形有一条边是曲线段，设其方程为非负、连续的函数 ( )y f x= 。

曲线 ( )y f x= 与直线 ,x a x b= = 及 x 轴围成的曲边梯形(如图 1)面积不能再直接用矩形面积公式来计算

了，因为在底边上不同的 x 点处，对应的高 ( )f x 是曲线变化的。 
 

 
Figure 1. Curved trapezoid 
图 1. 曲边梯形 

 

解决方案：考虑先将区间 [ ],a b 上的整体问题(曲边梯形的面积)分割成小区间上的局部问题(一个个窄

曲边梯形的面积)；在小范围内作近似，用以小区间上某点的函数值 ( )f x 为高的窄矩形面积代替对应小

区间上窄曲边梯形的面积(图 2)，这种以直代曲的近似是合理的，原因是在小范围内连续函数 ( )y f x= 的

函数值变化不大；再以这些窄矩形面积之和作为整体面积的近似值(从局部到整体)，并把区间 [ ],a b 无限

细分下去，也使得每个小区间的长度都趋于零，这时所有窄矩形面积之和的极限值就是要求的曲边梯形

的面积。 
 

 
Figure 2. Segmentation of a curved trapezoid 
图 2. 曲边梯形的分割 
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这种“化整为零(分)→局部近似(匀)→积零为整(合)→取极限得精确值(精)”的思想正是后面要学习

的定积分定义的几何体现之一。 
背景问题 3：数值π 的求法。 
人们在生产实践中发现了圆的面积与其半径之间的关系

2A Rπ= 。为了对π 的值做出精确的估计，

中国魏晋时代的数学家刘徽，采用“割圆术”计算π 。他的想法是，单位圆的面积就是π 的值。具体做

法如下： 
如果用 nA 表示单位圆内接正 n 边形的面积，刘徽得到了一串数： 

6 12 24, , , , NA A A A 。 

这是一串逐渐逼近π 的数，当然， N 是多少我们不得而知。刘徽的最终结论是：π 在 3.1415926 到

3.1415927 之间，这是一个精度较高的，了不起的成果。 
“割之弥细所失弥少割之又割以致不可割则与圆合体而无所失。”在刘徽这句话中，“割之又割以

致不可割”合理但不准确，理论上，“割”是永远可割的，也就是说：由“割圆术”得到的不只是有限个

π 的近似值 

6 12 24, , , , NA A A A ， 

而是可以得到无限个π 的近似值 

6 12 24, , , , ,NA A A A ， 

而且它们一个比一个更靠近π 。这是一个由近似值逼近精确值的无限的过程。 
古人对“无限过程”早有认识，例如，庄子曰：“一尺之锤日取其半万世不竭。”这句话的数量可描

述为一列数： 

2 3
1 1 11, , , ,
2 2 2


。 

而这样的无限过程也正是极限的本质，后续发展为对所得一列数取极限即可达到我们想要的效果。 
上述三个背景问题，虽然属于不同的几何问题和物理问题，但它们解决问题的方法有着共同的数量

特征：观察一串数的变化趋势。 
数学是抽象的。数学的抽象体现在它撇开了事务具体的几何与物理意义，而仅仅保留它们所具有的

共同的数量特征。数学之所以有着广泛的应用性也就在于此。 
为了研究“无限的变化过程”，引入其数学描述，即数列的概念[2]，也即按一定顺序排列起来的一

串数。有限个数有序排列称为有限数列；无穷多个数的有序排列称为无穷数列： 1 2, , , ,na a a ，记为{ }na 。

这里研究的数列都是无穷数列，简称数列。 
由数列{ }na 中任意选出无穷多个数，并按原有次序排列所构成的数列，称为数列{ }na 的一个子列。

易见数列{ }na 有无穷多个子列。给出一个自然数列{ }n 的子列{ }nk ，就对应有一个数列{ }na 的子列{ }nka ；

反之亦然。 
数列的通项 na 是一个定义在自然数集合上的整标函数，自变量为自然数 n 。设函数 ( ) ( ), 0,f x x∈ +∞ ，

当自变量 x 依次取1,2, , ,n 时，对应地就得到一个数列{ }na ，其中 ( )na f n= 。 
整标函数也是函数，照搬有关函数的有界性、单调性等定义，就可以讨论数列的有界性、单调性等。 
例如：自然数列{ }n ：1,2, , ,n 的一个子列{ }nk ： 1 2, , , ,nk k k 就是一个单调递增的数列，并且无

上界。 
数列{ }na 是一个无限变化过程的数学描述。 
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2.2. 逼近法 

从上面三个实际问题的解决方案中，我们看到，它们在思想方法上是相同的，即： 
在求一个不易求得的精确值 A 时，退一步而求其次，先求它的近似值 na ，并建立一个由近似值到精

确值的无限逼近过程{ }na ，然后通过观察{ }na 的变化趋势，得出 A 的一个符合精度要求的良好的近似值

Na ，甚至求出精确值 A。这一方法我们称为逼近法。 
逼近法是微积分学处理问题的基本方法。 

2.3. 数列极限的概念 

在使用逼近法解决上述几何与物理问题时，它们所表现出来的共同的数量特征是：观察数列{ }na  (近
似值序列)，当 n 逐渐增大(用 n →∞表示)时的变化趋势，看 na (近似值)是否在靠近某一个确定的数值 A  
(精确值)。如果是，我们称数值 A 为数列{ }na 的极限，记为： lim nn

a A
→∞

= 。 

将数列看成整标函数后，我们可以将数列极限研究的内容解释为：在观察当自变量 n →∞时，对应

的函数值 ( )f n 的变化趋势。如果当自变量 n →∞时，函数值 ( )f n 无限“逼近”(或者：“靠近”)一个常 
数 A，那么就称这个常数 A 是数列 ( ){ }f n 的极限，记为： ( )lim

n
f n A

→∞
= 。 

数列{ }na 是一个无限变化过程的数学描述，而数列{ }na 的极限就是这个无限变化过程趋势的数学描述。

极限概念的引入在无限和有限之间架起了一座桥梁，使人们可以对“无限的变化过程”进行描述和研究。 
总之，极限是一个数，它描述了一个无限变化过程的变化趋势。 

2.4. 数列极限的定义 

上面给出了极限的描述性定义，但是它不准确，有模糊的地方。之所以说它“不准确”，是因为“逼

近”、“靠近”的概念是模糊的。因此，这个关于极限的描述性定义，不能作为严格逻辑推理论证的依

据。 
“没有定量分析的科学，不是真正的科学。”数列极限描述性定义缺少对“逼近”或“靠近”的精确

“定量”描述。为了深入地研究极限理论，还必须给出精确的极限定义。为此，首先观察无限“逼近”或

“靠近”应当具备什么性质；然后再看如何给出这些性质的准确的“定量”描述。通过考察上面三个背

景问题可知，我们所需要的“逼近”或“靠近”，应当具备以下两个性质，即： 
(1) 靠近的任意性：随着逼近过程的延续(用 n →∞来描述)，近似值 na 与精确值 A 的绝对误差在缩

小，并且可以任意小。这一性质可以精确地定量描述为：对事先给定的任意的精度要求 0ε > ，总可以找

到一个自然数 N，使 Na A ε− < 成立(只要 N 足够大)。 
(2) 靠近的可控制性：随着逼近过程的延续(即 n →∞时)，对事先给定的任意的精度要求 0ε > ，不但

存在使 Na A ε− < 成立的自然数 N，并且从此以后，近似值与精确值的绝对误差不会再增大了，也即第 N
项以后的所有项 na 都有 na A ε− < 成立。这一性质的精确定量描述为：当 n N> 时，恒有 na A ε− < 成立。 
有了对“逼近”或“靠近”准确的定量描述，也就明确了我们这里所说的“逼近”或“靠近”的准确含

义，从而有了下面数列极限的(“ Nε − ”)定义： 
定义 1 [6]设{ }na 是一个数列，A 是一个数，如果对任意给定的(任意小的)正数 ε ，总存在自然数 N，

当 n N> 时，恒有 na A ε− < 成立，则称 A 为数列{ }na 的极限，记为： lim nn
a A

→∞
= 。这时也说数列{ }na 是

收敛的，称不收敛的数列{ }na 是发散的。 
定义是对研究对象可分辨特征的描述，具有定义中描述的“可分辨特征”的对象就是收敛的；否则

就不是。定义中描述的“可分辨特征”是判定“是”与“不是”的依据。 
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有了数列极限的定义，我们可以利用它来判定(证明)一个数 A 是否为数列{ }na 的极限。判定(证明)的
要点是：对任意给定的(任意小的)正数 ε ，能否找到(或说明)满足条件“当 n N> 时，恒有 na A ε− < 成立”

的那个自然数 N 存在。如果存在，数 A 是数列{ }na 的极限；如果不存在，数 A 就不是数列{ }na 的极限；

并且，在寻找 N 的过程中， ε 当成常数对待。 

例 1 证明
1 1lim

2 2n

n
n→∞

−
= 。 

证明 对任意给定的(任意小的)正数 ε ，要使
1 1 1

2 2 2
n

n n
ε−

− = < 成立，只需
1

2
n

ε
> 即可。可见，若取

1
2

N
ε

 =   
，其中

1
2ε
 
  

表示不超过
1

2ε
的最大整数，则当 n N> 时，恒有

1 1
2 2

n
n

ε−
− < 成立，故有

1 1lim
2 2n

n
n→∞

−
= 。 

在使用“ Nε − ”定义证明 lim nn
a A

→∞
= 时，核心步骤是从解不等式 na A ε− < 出发，找到满足条件的 N，

而这样的 N 只要存在即不唯一，比如在例 1 中，取 N 为大于
1

2ε
 
  

的自然数均可。因此，为了求解方便，

可以先将 na A ε− < 适当放大以后再让其小于给定的任意小正数 ε ，下面的例 2 即是如此。 

例 2 证明
2

2
3 1lim

2 5 6 2n

n n
n n→∞

+ +
=

+ +
。 

证明 对任意给定的(任意小的)正数 ε ，要使
2

2
3 1

2 5 6 2
n n
n n

ε+ +
− <

+ +
成立，因为 

( )
2

2 22

3 1 3 4 1 ,
2 5 6 2 42 2 5 6

n n n n
n n n nn n

+ −
− = < =

+ + + +
 

所有，只须
1
n

ε< ，也即
1n
ε

> 即可。可见，取
1N
ε
 =   

，则当 n N> 时，恒有
2

2
3 1

2 5 6 2
n n
n n

ε+ +
− <

+ +
成立，

故有
2

2
3 1lim

2 5 6 2n

n n
n n→∞

+ +
=

+ +
。 

当数列的 na A− 形式复杂(如分式、根式、含多项式的分式等)时，直接解不等式会很困难，甚至无

法解出明确的 ( )n g ε> 。将 na A− 适当放大的目的是“化繁为简”——通过合理的不等式变形，将复杂

的 na A− 转化为“易解、仅含 n 的简单表达式”，而且这时不等式是可以传递的，从而可以快速找到 N，
且保证“好解的不等式成立时，原不等式一定成立”。另外，N 是正整数，若化简后得到的 ( )g ε 是小数，

可向上取整得到 N。 
上述两道例题在解题思路上是一致的，都在寻找(或说明)那个“符合条件的 N”的存在；但在寻找(或 

说明)的技巧与结果上略有不同。例 1 中找到的
1

2
N

ε
 =   

，是“符合条件的 N”中最小的一个；而例 2 中

找到的
1N
ε
 =   

，不一定是“符合条件的 N”中最小的一个，原因在于：在寻找 N 的过程中，运用了“放 

大”的技巧。例 2 说明：我们只需在无穷多个“符合条件的 N”中找出一个，或说明“符合条件的 N”存

在就可以了，而不一定非要找最小的那一个。 
这种“只要说明存在就行”的更深层的理由是：数列{ }na 是一个无限变化过程的数学描述；数列极

限研究的是这个无限变化过程的变化趋势。我们研究的是一个无限的变化过程，对有限项的变化不感兴

趣。这层含义在下列定理中表述的更加清晰。 
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定理 1 改变数列的有限项，不改变数列的敛散性；对收敛数列而言，改变数列的有限项，不改变数

列的极限值。 
改变数列的有限项，包括去掉、增加有限项，或者改变有限项的值[6]。 

2.5. 数列极限的几何解释 

对抽象数学概念的理解，常常需要变化一下看待问题的视角。概念的几何解释，为我们提供了一个

看得见摸得着的模型。它可以帮助我们思考、发现概念深刻的内涵和广泛的外延。 
根据数列极限的定义，当 n N> 时，恒有 na A ε− < 成立，等价于对应于 n N> 的那些项 na 满足 

nA a Aε ε− < < + ， 

也即 na 被夹在 Aε − 与 Aε + 之间。于是有： 
数列极限的几何意义：对任意给定的(任意小的)正数 ε ，都存在自然数 N，当 n N> 时，对应的点 na

都落在数轴上数 A 的 ε 邻域中，而在该邻域外最多只有有限项(前 N 项) (图 3)。 
 

 

Figure 3. Geometric representation of the limit of a sequence on the number line 
图 3. 数列极限几何意义在数轴上的表示 

 

若将数列{ }na 看成是整标函数 ( ){ }f n ，则 
数列极限的几何意义：对任意给定的(任意小的)正数 ε ，都存在自然数 N，当 n N> 时，对应的函数

值 ( ) nf n a= 都落在以数 A 为中心，2ε 为宽的带形区域内，而在该区域外最多只有有限项(前 N 项) (图 4)。 
 

 
Figure 4. Geometric representation of the limit of a sequence on a plane 
图 4. 数列极限几何意义在平面上的表示 

 

相关定理[6]有： 
收敛数列的有界性。收敛的数列，其值必在某个有限的范围内，不会无限增大或减小。这由上面数

列极限的几何意义显而易见。 
有界性是收敛的必要条件，而非充分条件——收敛一定有界，但有界不一定收敛。 
数列极限的唯一性。对于一个给定的数列，其极限值是唯一的，不会因为不同的计算方法或不同的

观察角度而得出不同的极限值。这一点在直观上可以通过数列极限的几何意义看出，也可以根据数列极

限的定义利用反证法给出严格的证明。 
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极限的保号性。对于充分大的 n，对应数列的项的符号与极限的符号相同。这意味着数列的极限值保

持了充分靠后的那些数列项的符号特性。同样，根据数列极限的几何意义易得此结论。 
保号性的“保号”仅针对“n 足够大时的项”，不包括前 N 项。 

这些特性是数列极限理论中的基本性质，它们对于理解和应用数列极限的概念至关重要。唯一性和

有界性确保了极限值的确定性和可预测性，而保号性则提供了关于数列项符号的重要信息，这些特性共

同构成了数列极限理论的基础。 

2.6. 数列极限的再剖析 

定理 2 设数列 ( ){ }nf k 是数列 ( ){ }f n 的任意一个子列，则 ( ) ( )lim lim nn n
f n A f k A

→∞ →∞
= ⇒ = 。 

该定理说明了什么呢？它是由极限的什么特性反映的呢？ 
如果将自然数列{ }n 的一个子列{ }nk 看成是整标函数 ( )f n 自变量的某一种增大方式的数学描述，那

么该定理说明：整标函数 ( )f n 的极限，与自变量增大的方式无关；反之，如果有关，即设{ }1,nk 与{ }2,nk  
是数列{ }n 的两个子列，并有 ( )1, 1lim nn

f k A
→∞

= ， ( )2, 2lim nn
f k A

→∞
= ，若 1 2A A≠ ，则数列 ( ){ }f n 是发散的。 

可见，极限的这个性质无疑也是“靠近的可控制性”的反映。由于它有着较为特殊的意义和广泛的

应用，我们将它单独抽象出来加以刻画，作为极限的第三个“可分辨特性”：极限与趋近方式无关性，即

数列的极限，与自变量的增大方式无关(若有关则数列是发散的)。 

3. 函数的极限 

从数列极限到函数极限可以从两个角度入手。一是将数列极限的概念直接推广到更一般的情形。将

自变量由特殊的自然数 n 推广到一般的实数 x，自变量的变化方式由 n → +∞推广到自变量 x 的某一变化

过程，即可引出函数极限的一般概念。 

3.1. 函数极限的定义 

在自变量的某个变化过程中，若对应的函数值无限接近于某个确定的数，则称这个确定的数为函数。 
在这一变化过程中的极限。另一个角度，整标函数 ( )f n 可以看成是函数 ( )f x 的子列，利用前面介

绍的数列与其任意子列的关系类似可得函数 ( )f x 当 x → +∞时的变化趋势如何用极限的语言表达。 
对于函数 ( )f x 来说，其自变量的变化趋势除了 x → +∞以外，还有更多的情形，比如 x → −∞，x →∞

以及 x 无限接近有限值 0x ，即 0x x→ 等，只需将刻画无限接近的语言和尺度作对应修正，从而对应讨论

函数 ( )f x 当 0, ,x x x x→ −∞ →∞ → 等时的变化趋势，得到另外几种情形下函数极限的描述性定义。比如，

若函数 ( )f x 在 0x x→ 的过程中，对应函数值 ( )f x 无限趋近于确定值 A，则称 A 为函数 ( )f x 当 0x x→

时的极限。对应于数列极限“ Nε − ”定义，有以下函数极限的“ ε δ− ”定义。 
定义 2 [6]设 ( )f x 在点的某一去心邻域内有定义。A 是一个数，如果对任意给定的(任意小的)正数𝜀𝜀，

总存在正数δ ，使得当 00 x x δ< − < 时，恒有 ( )f x A ε− < 成立，则称 A 为函数 ( )f x 当 0x x→ 时的极 
限，记为 ( )

0
lim
x x

f x A
→

= 。 

函数极限从“ Nε − ”到“ ε δ− ”的演变，是从“离散变量的无限趋近”拓展到“连续变量的无限趋

近”，本质均遵循“任意小误差下的变量控制”思想；数列极限“ Nε − ”定义的思想本质是：是通过控

制离散变量 n 的“足够大”，实现数列值 na 与极限 A 的“误差任意小”；而函数极限“ ε δ− ”定义的思

想本质是通过控制连续变量 x 与 0x 的“足够近”，实现函数值 ( )f x 与极限 A 的“误差任意小”。其中任

意小正数 ε 是误差容忍度，正数δ 是变量控制阈值，当变量满足“足够近”条件 00 x x δ< − < 时，误差
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满足“任意小”要求。两者均以“ ε 的任意性”刻画“误差无限小”，以“ /N δ 的存在性”刻画“变量

控制的可行性”，是“极限本质是无限趋近”的严格数学表达。其中 N 依赖于 ε ( ( )N N ε= )，δ 也依赖

于 ε ( ( )δ δ ε= )，且均不唯一( ε 固定时，可找到无数个满足条件的 /N δ )。 
不等式 0 0x x− > 是排除 0x x= ，因为极限是函数值的变化趋势，函数在某一点收敛或发散与函数在

该点的函数值是否存在以及函数值是多少无关。另外， 0x x→ 包括 x 从小于 0x 以及大于 0x 两侧趋近于 0x  
的情形，如果只考虑一侧，则为单侧极限。若 ( )

0
lim
x x

f x A
→

= ，则说明在这两种情形下均有对应函数值 ( )f x

无限趋近于同一确定值 A，否则函数在该点处极限不存在，也即发散。 

例 3 证明
( )

2

1

1lim 1
2 1x

x
x→

−
=

−
。 

证明 对任意给定的(任意小的)正数 ε ，要使
( )

2 1 1
2 1

x
x

ε−
− <

−
成立，因为

( )
2 11 1

2 1 2
xx

x
−−

− =
−

，所以，

只要 1 2x ε− < ，也即
1

2
x

ε
−

< 即可。可见，取 2δ ε= ，则当 0 1x δ< − < 时，恒有
( )

2 1 1
2 1

x
x

ε−
− <

−
成立，

故有
( )

2

1

1lim 1
2 1x

x
x→

−
=

−
。 

说明：用定义证明函数在一点处的极限，只须对于任意小的正数 ε ，能够说明δ 的存在性即可。这

里的δ 刻画的是自变量 x 与固定点 0x 的靠近程度，通常是将正数 ε 视为常数，通过解不等式 ( )f x A ε− <

来找出 0x x− 需要小到什么“程度”，而这里的“程度”即可取为δ 。一般情形下δ 并不唯一，也无需找

出最大的那个δ 。同理，在解不等式的过程中，为了便于计算，也可以适当放大后解出 ( )00 x x δ ε< − <

中的 ( )δ ε ，但要注意放缩必须是“单向放大”(如 ( ) ( )0f x A g x x− < − )，不能缩小，否则无法保证不等

式成立。 
函数的极限定义同样具有靠近的任意性、可控性等可分辨特性；而在某一过程中收敛的函数也对应

具有局部有界性、极限唯一性及局部保号性等。 

3.2. 海涅定理 

海涅定理以数列极限为桥梁，建立了“ Nε − ”与“ ε δ− ”两者的逻辑关联。 
海涅定理(函数极限的数列化定义) [6]设函数 ( )f x 在 0x 的某去心邻域内有定义，则 ( )

0
lim
x x

f x A
→

= 的

充要条件是：对任意满足 0lim nn
x x

→∞
= 且 0nx x≠ 的数列{ }nx ，都有 ( )lim nn

f x A
→∞

= 。 

海涅定义将“连续变量 0x x→ ”的极限问题，转化为“所有满足条件的离散数列{ }nx 对应的函数值

数列 ( ){ }nf x 的极限问题”，使两种定义的逻辑关联可视化—连续变量的极限本质是“所有相关离散数列

极限的一致性”。海涅定义与“ ε δ− ”定义互为充要条件，即两者严格等价。但要注意海涅定义的“任

意性”，证明函数极限存在时，需保证“所有”满足条件的数列{ }nx 都收敛到 A，不能只取一个数列验证。 
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