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Abstract
In the scenario of primary disease screening, data imbalance will cause the classifier to bias the
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prediction of the majority class, which will have an impact on the performance of the model. There-
fore, choosing appropriate data imbalance processing strategies and classifiers is of key signifi-
cance to improving performance. This article analyzes unbalanced stroke data sets and constructs
various experimental plans: eleven data imbalance processing methods are introduced, and four
machine learning algorithms are combined to identify stroke patients (LR, SVM, CNN, RF). In the
comparison of multiple groups of models, it is found that LR, SVM and RF after RUS processing are
better than other methods, and PCA dimensionality reduction was introduced to analyze noise data.
Then, the methods of PSO, GA, DE and BO are used to optimize these three models. The AUC of GA-
RF is 84.18%, and the Recall is 91.06%, which has significant advantages. Finally, in order to break
through the explanatory limitations, SHAP is used to analyze the feature importance of these models.
Itis found that the role of age in stroke recognition far exceeds that of other features.
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1. 5]

TERNAFE B, b — 28R ARSI B0 T 5 — 3851, MG Z WLT szl
5 H RSP . R NAZ I 57 BRI S5 40 1], Ih S8 & S BURUE /0 K88 = AR K 0w 2%, fE5
ST TE M OGTE ZHCRAEA, T S EOS D BEEFEAR RN B ERE AR, I H R R T RE 2k DB
AR BI P AR, BB INEEE o R R . Dk, R I SRR B AT AL B, R e AN
TR 73 FBUR 1

Bl A7 A ER 7 VR AT 43 R B 2 T LSRR vk RORFE 4, DA RREZ T RS . 550
WITAHIE T 8 AF A PR B R BT S, BB AR AT DT IE R REAR, [l P oh 23 T of 7 B33 1 S A7 JEE T A%
ZWH5: MATLOOB KHUSHI &5 [2%} bt 23 FEASPATER ) 7255155 3 Fhr 284§, 76 PLCO 5 NLST
Pl Zd 2 BHEAT 5000, 49 20 RAE VR LU R SRS 4518 Tri Huynh 28[3]5]\ ABCL J7i%, 1R
PEFNMERE ) B IE R, R — SRR I AR A AT, R EEST BRI 10, I 5 FAh 7 AT x0T b,
UAR A 7 W 5E42TF: XuZhaozhao %5[4]45 4 SMOTE 5 k ¥{E S, GIH L H—F KNSMOTE i %kt
Tk, JEAE 8 AN UCT B AIxT te b REBUE N 99.84%, i EFaFrIAH] 99.56%; Vinod Kumar 25[5]%
6 POy RARAEXS 5 Fhlm R AR S ERAT RIS, SR ZFMEEE R AT 7%, 493] SMOTEENN i T-H
fhFEAR 4518 Debapriya Banik 556515 5 2412 Wi o SRR M1 5| 2 IR 4R In) 8, 43 BT AN [F)~F- 16 SRmes
BRI % Yao Peng S5 [ 710 7/ NS EHR AR 10 B2 R 12 8T, il CSOZE R AT . 22 B K
BRI BT 22 ST SR, AR — TR A R R 248 (AR R S A T 2 P AR U 2L

A IE (1) 0 AR TR K [ RO 7 R 28 55 B B2 : Mir L AL Jevin 25 [ 8170 FH ST I e A b B 3 A5 78 R
F T ST B, R RZ 4N H. SVM. XGBoost 5 RF DU 732, *b ORI KEATII R, 13
FIBEHLARAR TR RIE B 90%, =T HABSE L Moloud Abdar 2591 FH 8 /2% 1 5.9% Boosted C5.0 54
HW LI CHAID W7 FFAE 0% 193R 51, E/S DB. ALB. SGPT. TB . A/G 48 Fr 0t FFm Tl B A & 2%
S0, Ding Huanfei 5[ 104 IENLIEIH. LR, RF. $R3EH 5 XGBoost 25 732 M 525 4 i ihitEl 5
A S IR 280, Horh RF 1) AUC 54 112655 JliE £ 0.999 5 0.843 K I H:; M.Sivaram Chowdary

ik
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ZE[1114 CNN S5BORZ 4R T 20r b, PEAS T2 R M o 35 R G PE RS, CNN IR 228 95.2%, T3 B3
Raghav Agarwal %[ 121 55 CNN SUETE B RS2 WA (S, SR 11 MO R IR 25 75, o ResNet152
FEA IR HERVE SRS P 0 T HAR B 2 S 7 i

SHTUL BT LR, BEREIE. EREE . AL LS o) TR IZ N T 2 e
F, ALHET KA Kaggle [ REESE, FIA 11 Mg APl b2 77%, 4625, SVM. CNN,
BEALARPK 4 FhHL #8272 2 B0, b ep U BRI BEAT A 98 . 303850 8 5 Ny B8 1 S0 e ARG IR,
BAEAPE AL B 70 HLas 5 ) FE SRRV Fabn s 26 2 B0 2 kol , B EER RIE S St
PEO T 28 3 BB S5, ALFEREGE A TAL B . i A3 SRR S5 BT L 28 4 B 2 AR A 1 Ak . SHAP
FRIEE L0 56 5 i R ads.

2. FHXIEP
AT BEAEA AT AT 20, S2o6 N A g 22 S Sk . AL SETE DL AR R Pl 8
2.1. BIERERILE

B A AL BE 7 VG2 R TR R AR A | BT A W A 2RI FE IO 55 2 AN 3 5[ 13]-[15],
BN 2 T RS S8 A B 7 VR P SR AR R MR FE T AT, T DR KR e 5 s R 110 225 ) 2%
WREILG, HIXPhI7iE S0 J8AH AT, B . H 3 B0 N RFE 77 RORFETT 1 LA R
HIE, IR A HIX LT

(1) B EES K FE(SMOTE)

SMOTE AN EERREAS, B k NMITA, EFEAR SR AL EREN LR IS, A el i)
KRR, E BB T

(2) BIEMN A IR (ADASYN)

ADASYN H SMOTE kiR, &iuidid k im0 PSR4 pE 2 Bt Bl R EE R 0 B2, R0k
Rk, A I R A A B DB R AR

(3) FHMLILKAE 72 (Random Over Sampling, ROS)

ROS MR ZHERFEAR, WDEEEAFFENES], (R DBRHEALES ZHE .

(4) BEHLREAE T2 (Random Under Sampling, RUS)

RUS 5 ROS J7VER B, AN /DHERIEAS, BENLINER 2 BERFEA, B BIAN R S0 i) 8 & — 2.

(5) M 5B+ (Tomek Links)

TomekLinks i i b 22 B0 FRE AT KRR, A SURDHERFEA, T AN [F] 28 501 f) H 8 [X
.

(6) LRAES Rl E 2+ 3 AR (SMOTEENN)

SMOTEENN 4 F|F SMOTE A s/ HORE AR, 101 FH S i 5 A5 R0 U (ENN) FRTGE Fir A REA, /D 30k
FEART) K IEAR R ZHRHEAT 2, 8038 ZHCFEARN kIR AR/ DB ARTE 2, W) e 75 R -

(7) B HERIE RFE + M e 554 (SMOTE Tomek)

SMOTETomek 5&FH SMOTE A4 Bi/bHEFEA, BRI TomekLinks MR M) 2 HEEEA, 45
T SRR S ROCRFE B R S 5 10 FHE R

(8) U FA L KA (Borderline-SMOTE)

Borderline-SMOTE i 73 $rAEAS k L QBIRS s, D BEEAZ, MAGH, H2HEEEAZ, I
THEA BDBEREAR, R RZHEEFEA, T W A 7 I R .
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(9) ZFrENLG D HER IS K FE(SVMSMOTE)

SVMSMOTE 4&il%k SVM #8), $RECD B Sc R, BT s DR R i 5 kA, A
T AR IRV B A OB RE AR o

(10) K M & Rl b B2k id KA (KMeansSMOTE)

KMeansSMOTE X} fT 5 FE A Kmeans %25, 85 K MK, HEGAE R DHCREEARN S, xf0
o 2 B B % T SMOTE #iff

(11) JARIE %M (Neighborhood Cleaning Rule, NCR)

NCR WA FEA TS k ANUEAR, B FEAR I AR S4TSR, ) 5 A s AR A7 IH e
BAE, APURIEREUE TR, SR REA T E IS, 5K E AT AR AR (11 .

2.2. HBZFFEIESE

(1) ZHEVA(LR)

BRI GAA, T R0, B Sigmoid BRHCRHRF AL LR AL A L 2
[0, 11DX T, Ff Bhfge M AZ SORS R e O B b, SRR FREILA S, A se a2k

(2) FFHEHL(SVM)

SCRF I RN 2 S I 7 S S0, LSRR ) BT 9RO, I pR RO R RT 2
o 1) LA A D s 240 SRR o R T R, 4 AN [RIRE A S8 1 7] B dee K

(3) BAFHZ L (CNN)

GRS —RU S BRI H B AARESWI T o e Mg, il mmAz. SRE. ib
RS SRR DUy . ABIE FUB 0 — AT e i 207 7RG CNN B, b gy N2 Bl e K
a5, BRUZRM 16 > 1 gEEBULSEHUR FRI ERHIE, A2 00 B IE R4 R it e R
AEGE— R4 AN e RS, RN K BEAR —Br B B 5@ 32 442384 )2 (& Dropout 1EMI)A 1 4k
M E, 4 Sigmoid PREEHE MR,

(4) BEHLARHR(RF)

BEALARARIET H T 2 A PRI R BTN EE R &, PRSI A I ARE ST . FE20RAE 55+,
B SEIHIE Bootstrap SKAE MIIZREE Ap BEHLA TR E1 ik BUREAS, 1931 22 4> 7 Hela S (DR s 285 ReAIERAE
TER I RETT RUP RS, BEAUE I — 0 R AT S HE 0 R i (K3 P8, SBR[ 24 s s B PRk
SEAE XS R I RE A FRHE T4 LI R, ORI Bt 45 21
2.3. BRENF(EIER

BATL A RONIERIEUE 1), AR ROAFEEE 0). EESTHIERBEATEHIFILT, K HErh R
NPFETERS AT AT, & BB RS G VERE AT S, DA SOERE AUC, H FIRVE B E PR AR
TRbR. TRIEFFE I VME FFHYE(TP) BFEPEEP) BUATEEN) FAPE(TN) R bR (K 2E AL, 2 PFAY
FEARI TR 5

FPR=FP/(FP+TN), TPR=TP/(TP+FN), (1)

Recall =TP/(TP+FN), )

Hrfr, AUC UMAE ROC #HE MR, T8 B R T IR GO A IR E 77, 7T AR S A1 0 5 72

TAZBMERIFENE, AT LRI AR (D2 ROC MR i R EF FPR SHMHHIESR TPR. K(2)kE
HIEIZ, PP H RN E R RE (B X«
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3. SHUHIRE
AT HAE R, R RFEA AT YD 5007 55 FR it
3.1. BUERIR

SEESHAR L FER B Kaggle AT REHREE, LEAE 43400 %64, 12 M7, BFEHENATE
4 NG5 id. FER age. MBE&GHESE avg glucose level. BHATEEL bmi), AT HAE 7 AN(HEH
gender. H L& LK hypertension. A Jo /Ui heart disease- & 75 45 45 ever married. LEZST work type.
Fr{EHLIX Residence type. #i0H%2¢ smoking status), [KAFE 14, NZEH K stroke, H XA H X
FEARLUAE N 783:42617, 2104 1:54.43, f7AE/™E A4

3.2. BURGHE S H

S AFE A RS R, B R A IR AR S XK ORI . AR 24 stroke.csv A Python,
W EETIRFE AT 048, ids RS, S, SHRFRER AN 4310, 3650, 73000]. [0, 10,100]. [50,
25,3001 [10, 10,1001, FF&:iilorFa/E0R id SbSHRHER A B, DU REFER RS, WA 1.
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Figure 1. Frequency distribution histogram and stroke proportion of numerical features
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Figure 2. Value distribution of categorical features and stroke proportion
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4.1. HIETMALE

FERESL o AR R, FRATTFREEEE (AR AR D, R EOE B R AT AL B .
Gt N, SRR ECE 1462 N, SIRSEZE 13292 NMIVRAE, BECN 14754 4, Bl T SR $550
(iR 2B A NP3 bmi ZKSF 23.5 SN, KR S5 G 1 B AEIC N T AR RS, RN “unknown” .

FRRAEKC LSS, AT id AT FEGFEECN 10), B2 5 00 BBAR AT hr S il J5 1R 5 Sl 13
BIAFAE T HAH (R A IR (4061 AN 348, AR REL B 4.92%) O IFR (2062 AN 5 548, HRXUEL B 8.58%)-
MLKE4978 N, HKEL] 5.08%) S AT £(1084 S E, HHXELH] 1.01%).

B T JE A R 1) A LR A5 R 1.80% (783/43400), K 2 HUAFAE W B RUHRRAE, 3559 8 1 o R EL ) 2
AR LB 2 B 3 £, HIEARHMER 2 EE MR, R 2 S0, BRI Hf 16 e (B AT
R

TENLER S 2T, B THARAAE ™ E IR, 2 SRR ™ B ), PRI 3 0 1 B AN~ 17
REERJTIE, R AR ERR AR R A OCEE . FRATTKE AR B 5 I BE SEAE IR 7.3 B LU REATL R 4 IR
£ 5MRE, FIH LR, SVM. CNN SEEHLARM 4 FhLes s o) Bkt T 905 .

4.2. KELESEBNEL
AT 11 Frfcs 2 AP ab 307 X, AbBIZREESdE, W5 R0 R LR L 1.

Table 1. Imbalance ratio after data imbalance processing

= 1. RS TELEEN A TR

ik ANub SMOTE ADASYN ROS RUS TomekLinks
Eel 54.43 1.00 0.997 1.00 1.00 53.96
4% SMOTEENN SMOTETomek BorderlineSMOTE SVMSMOTE KMeansSMOTE NCR
=] 0.90 1.00 1.00 1.79 1.00 51.97

e 1 g gs): £ SMOTE. ADASYN. ROS. RUS. SMOTETomek. BorderlineSMOTE.
SVMSMOTE. KMeansSMOTE Ab¥ 5 (1) 448 3 A% ] DASE I P47, i2eid SMOTEENN Ab 5 84, 2
U2 G REAR, B DBERMEAR S Z B AL, TomekLinks. NCR AbH 5 845 £ BR 1 M
FEA, B ERREE, EERMAME IS, XT84 R AT .

BARAREL S, 30K A NS R 73 R0, 15 BB 45 R 3K 2.

Table 2. Comparison of model results

2. RRERMRTEE

LR SVM CNN RF
WiRis AUC Recall AUC Recall AUC Recall AUC Recall
EiYisl 84.68 0 63.74 0 79.44 0 84.22 0
SMOTE 84.79 79.15 77.72 52.77 79.80 71.91 81.40 41.28
ADASYN 84.82 80.00 77.50 53.62 78.61 65.53 81.29 41.28
ROS 84.81 80.43 78.17 59.57 80.34 79.15 82.57 53.19
RUS 84.76 82.13 82.98 79.57 77.52 71.49 84.17 82.98
TL 84.67 0 63.38 0.43 79.11 0 84.17 0
SMOTEENN 84.74 80.85 77.92 57.45 80.12 72.34 81.84 55.32
SMOTETomek 84.79 79.57 77.39 52.34 78.93 67.23 81.42 41.70
BorderlineSSMOTE 84.42 7447 79.36 3745 80.58 63.40 82.09 28.51
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SVMSMOTE 84.44 61.28 79.07 31.06 79.46 37.45 82.71 18.72
KMeansSMOTE 83.53 20.85 71.34 18.72 78.11 25.53 83.07 9.36
NCR 84.57 0 63.71 0.43 79.83 0 84.05 0

MELHE 2, MHLAS 2 ) L A BE, S8R R FEAS P, CNN 55 ROS 45 & YERE S U, AUC 4 80.34%,
BIEIH N 79.15%, (HIZATHF A4 702.35 5. 1] LR\SVM.RF 5 RUS 454 Fi SR 1) AUC 73 514 84.76%-
82.98%. 84.17%, HIEIZ55H10 82.13%- 79.57%- 82.98%, i&fTHfE4:5IA 0.54 5. 0.265s. 1.465s, Fl
CNN A ELAR AR o AWk, LR St & A7k A B e BB FRAS B T ORI T, (Rl LR 5 50408 26 iy
AbER T3 s G e T A SR

TS S AR AN A B i, FRATRHE R 2 i 1 4 5 1E] 5.
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Figure 4. AUC after data imbalance processing
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Figure 5. Recall after data imbalance processing

5. BB FELIEFR Recall

DOI: 10.12677/pm.2026.161003 24 FHIBH 2


https://doi.org/10.12677/pm.2026.161003

ST &

MEHESBTALFR R A, I 4 WTUAIEH, B TL. KMeansSMOTE. NCR 4t, A[FEEEL A T4
MERJE I AUC YIS 75%, B S aTLLE |, WA RUS WS 1 Recall #EEIL 70%, 156 SRR o XU
T HIZAC, T ROS 5 SMOTEENN 4b 35 A Recall #EEIL 50%, FIIRL .

T HE— T RUS FERF 7 R R IRt PERe,  FRATTE 3 5o 7 A oo Bl e 4, i RUS.
SMOTEENN 5 ADASYN [t AE RN LK, WL 6.

RUS, #EA#11096 SMOTEENN, #$75%156220 ADASYN, #£Z#59756

0

2
E2l

Figure 6. Comparison of noise sample size

6. BRRHAE XL

P 6 iTLAE R, BT RUS @SBRI 2 B A, M- EdE, Bt AR BA 7= 2 g
FREAR, fRE T RIGFEAR A5, H RUS BEFRAHERCE, ML SMOTEENN 5 ADASYN 1Y
KOOIk, - FEEGE PR =4 T RER A, 52m 7 BRI 55 fE

5. E=8E1L

TEWIES T, B SVM HRENLARM BRI R 47, ik — DI R M RE, FRATRIA PSO.
GA. DE. BO W Jj it 254k .
5.1. s

BAVIXFIX 4 P47 8 A 41

(1) KL EALAEIEPSO)

PSO @B SHER AT N FET R UMERIBEN I R EE . Cld FENIFIAE AR T 8E, TS
[E, RIEEHAE SRMBEERNE, &EEIRFIREMME, & MR AR,

(2) BAEFIE(GA)

GA JEIERE . 28 X\ B R AR B EERLA RS A RER S A BE el /2, ZNHT
MR A . FRLR AN 2 W (Y HR A 1) R

(3) Z/rH 1% (DE)

DE & — i 2 42 R ARG B0, BEAUL AR Ik A0 R BE AT Y, A IRt P 5 i AR SRR AL, R4 A e
I MIEREERME, GA MBS, HiH RS, DE HiGGELFEIM, Hg e,

(4) M- (BO)

BO JET- Ulnf-Hr g 28, A RSB0 H b o B0 AT EEBOAHERT, & &R s, JTHEH TH
PREABCE 2, T e, BERR ] SRR ) R A TR G s
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5.2. fiiseig
AT AUC 1EAACBE R, 3R 10 T8 XEUE, FHEadrfiiss R

Table 3. LR optimization results

F 3. LR ik ER

PSO GA DE BO
LR 84.28 84.22 84.31 84.22
SVM 84.50 84.37 84.28 83.91
RF 84.13 84.16 84.05 83.99

WHEEA 4 MEESE: IENSER penalty 8 i 4588 S AR INAE T TOR B i Bl &, IEES
H C R IENMERER R IR S48, BKBE S SE0IME, BOKIEAR IS max_iter #5251 i Ki%
RIPHL, class weight TAHERE . fH55 3, DE-LR BURELF: L1 IEN{L, C=0.1340685, max_iter =304,
class_weight=1: 1.7714181 3 2|MIEE ) AUC 4 84.74%, H[HZ 87.23%.

SVM LI B KRBT B AR, 5 4 NEESH: IR C K, RVFRSRIEERD,
%R BT kernel B4R AR LR MEACE WUt B s 423 0], SRIMERMERT 43, RS EL gamma B/, 0 5L
P, B E, class weight ¥R E . H17 3, PSO-SVM ZUR i df: C=2.0848617, kernel N4E[A)
A% 1bf, gamma = 0.0065456, class weight = 1:1, fFFIMERER AUC 1 84.68%, A% 81.70%.

RF %02 Z R IR R R, A 5 AEESH: REREE n_estimators $E AR, AR
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Figure 7. SHAP feature importance analysis of GA-RF
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