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摘  要 

本文考虑二维不可压缩多孔介质方程的Cauchy问题。首先通过Fourier变换将原方程转化为等价积分方

程，随后在Lei-Lin型函数空间框架下，系统分析了线性项与非线性项的估计。基于Banach动点定理，我

们证明 1 20 sθ
 − 充分小时，方程存在唯一的全局解。此外，进一步给出了方程解的解析性。 
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Abstract 
This paper investigates the Cauchy problem for the two-dimensional incompressible porous me-
dium equation. First, we transform the original equation into an equivalent integral equation via 
the Fourier transform. Subsequently, within the framework of Lei-Lin-type function spaces, we sys-
tematically analyze the estimates of both the linear and nonlinear terms. Based on the Banach fixed-
point theorem, we prove that when the initial data 1 20 sθ

 −  is sufficiently small, there exists a unique 
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global solution to the equation. Furthermore, we establish the analyticity of the solution. 
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1. 引言 

本文研究二维不可压缩多孔介质方程(IPM)： 

( )
0,

, 0, ,
0.

s
t

TP g

θ θ ν θ

κ θ

∂ + ⋅∇ + Λ =
 = − ∇ + = −
∇ ⋅ =

u

u g g
u

                             (1) 

根据 Darcy 定律，密度为 2( , , ) :t x yθ θ += × →  的流体经过多孔介质，其中 0κ > 和 >0g 分别表

示渗透系数和重力加速度，本文假设 1gκ = = 。正耗散系数 0ν > 表示粘性，而 0ν = 表示相应的无粘性。
sΛ 是分数拉普拉斯算子，可通过 Fourier 变换定义为

| |s sθ η θΛ = 。 
对于模型的物理背景和应用价值我们可以参考[1]和[2]、[3]的详细讨论。从数学角度看，方程 (1) 的

速度场 1 2( , )u u=u 可以用 0 阶奇异积分算子重新表述如下： 

2 1 1( , ) θ= − −u    ，                                 (2) 

其中 1 ， 2 表示二维空间中 Riesz 变换的第一分量和第二分量： 

( ) ( )
1 2

1 1
2 21 2,x x

− −= −∆ ∂ = −∆ ∂  ，                           (3) 

并且 Riesz 变换 , 1, 2j j = 被定义为： 

 ( )  ( )
| |

j
j f i f

ϕ
ϕ ϕ

ϕ
= − 。                               (4) 

在该方程中，压力 P 通过本构关系
2

1( ) xP θ−= −∆ ∂ 与密度θ 相联系，该关系式综合 Darcy 定律与势能

理论，这意味着压力可以通过对密度场应用拉普拉斯算子的逆算子来恢复。 
不可压缩多孔介质(IPM)方程是一类具有非局部特性的运输方程，与经典的耗散准地转 QG 方程有着

密切的联系。近年来，该方程的研究取得了重要进展。Bianchini 等研究了稳定 IPM 方程在 2H 中的不存

在性和强病态性[4]。Zou 则系统研究了二维耗散 IPM 方程在超临界和亚临界情形下的适定性问题，发现

了一类具有特殊结构 ( ) ( )1 2 2, , ,x x t f x tρ = 的解，其衰减行为与一维分数阶热方程相似。当初始值满足适

当正则性条件且接近这类特解时，建立了全局适定性理论[5]。目前，现有文献对 IPM 方程的研究已经形

成了较为完整的理论体系。在解的适定性方面，Córdoba 等研究了全空间情形[6]，Castro 等分析了条带区

域的情况[1]，Córdoba 等和 Friedlander 等则分别探讨了斑块型解和奇异斑块解的性质[7] [8]。在解的定

性研究方面，学者们获得了弱解的非唯一性、不稳定性和长期行为等重要结果，见[1] [7] [9] [10]-[13]。
针对耗散 IPM 方程，Xue 和 Yuan 分别在超临界和临界情形下建立了局部存在性和小初值全局存在性理

论[5] [14]。 
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基于上述研究，并考虑到相关条件，我们在如下临界空间中证明了二维不可压缩多孔介质方程解的

全局解的存在性和解析性： 

( ) ( ){ }2
2 ˆ ,

aa g g d aϕ ϕ ϕ′= ∈ < ∞ ∈∫


   ， 

其范数定义为： 

( )2 ˆ .a
a

g g dϕ ϕ ϕ= ∫


  

该空间作为一类基于 Fourier 变换的加权 1L 型空间，其范数自然适应于方程中由 Riesz 变换所导出的 

非局部速度结构，便于在频率空间中直接处理卷积型非线性项。其次，在耗散阶数
1 1
2

s≤ ≤ 范围内，尺度 

分析表明 1 2s− 构成 IPM 方程的临界空间，其范数在分数阶拉普拉斯算子 sΛ 作用下具有恰当的不变性，

从而为建立小初值全局解提供了最优的函数设置。最后，Lei-Lin 空间已在 Navier-Stokes、MHD 等主流

流体方程中成功应用，其方法体系成熟，便于进行线性项与非线性项的精细估计，并为后续建立解的解

析性(Gevrey 正则性)提供了自然的函数空间基础。 
这类函数空间最初 Lei 和 Lin 在研究 Navier-Stokes 方程时引入[15]，随后被广泛应用于各类流体力

学方程的研究。例如，Melo 等通过对 MHD α− 方程的研究，论证了在空间 [ ) ( )( )30, ; s
bC ∞  中存在唯

一全局解，并建立了该解的解析正则性和衰减估计[16]。在二维情形下，Benhamed 等研究了具有亚临界

耗散的二维准地转方程解的渐近行为，即确定了 ( ) 1 2t αθ −
在无穷远处趋于零[17]。Yuan 和 Xiao 在 Lei-

Lin 空间中框架下，建立了二维 MHD 方程强解的全局适定性理论[18]。在三维情况下，Xiao 等研究了具

有分数阶耗散的三维正则化 MHD 方程，对于小初值证明了温和解的全局存在性，同时获得了 Gevrey 类

正则性和精确的时间衰减率[19]。Jamel 和 Mariem 的研究表明，对于不可压缩 Navier-Stokes 方程的解 

( )2 1,u L+ −∈ ∩  ，当
3
2

σ > − 时，其衰减速率满足 ( ) ( )( )2 3 /4u t O tσ
σ− +=


 [20]。更多相关成果可参阅文 

献[3] [21] [22] [23]，这些工作进一步发展和完善了该函数空间在流体力学中的应用理论。 
在本文中，我们采用 Lei 和 Bae 提出的方法[16] [24]，获得了(IPM)方程解的全局存在性和解析性。

关于(IPM)方程全局解的存在性，得到如下结果： 

定理 1.1 设
1 1
2

s≤ ≤ 且存在一个依赖于 s 值的常数 0 0ε > ，使得对于所有属于 1 2s− 的初始数据 0θ 都

满足条件 

1 20 0sθ ε− <


， 

那么方程(1)在时间上有唯一全局解 
1 2 1 1s

t tLθ ∞ − ∩∈   ， 

使得 

1 2 1 1 1 20s s
t tLθ ν θ θ∞ − −+ ≤
  

。 

经典 NS 方程解的 Gevery 正则性一直是研究的热点。本文的接下来是研究方程(1)解的 Gevery 正则

性。为了方便计算，设 1ν = ，得到如下结果： 

定理 1.2 设
11, 1
2

sν = ≤ ≤ 则存在一个正常数 0 >0k 依赖于 s 的值，使得对于任意属于 1 2s− 的初始数

据 0θ 都满足条件 

1 20 0s kθ − <


， 
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在定理 1.1 中建立的全局解可以解析为 

1 2
1 2 1 1

| | | |
0

s s

s
s

t t

t t

L
e eδ δθ θ θ −

∞ −
+ ≤

  
， 

其中 | |ste δ 被定义为符号为 | |ste ϕ 的傅里叶乘子。 

2. 预备知识 

2.1. Fourier 变换 

f 在 2
 的 Fourier 变换的定义： 

( )( ) ( ) ( ) ( )2
2

1 2
ˆ : , ,i xf f e f x dxξξ ξ ξ ξ ξ−= = ∀ = ∈∫



 。 

它的逆变换为 

( )( ) ( ) ( ) ( )2
21 2

1 2: 2 , ,i xg e g x dxξξ π ξ ξ ξ−− = ∀ = ∈∫


 。 

2.2. Lei-Lin 空间 

关于本文所研究的临界空间，Bae 用不同的方法[24]展示了 Lei 和 Lin 的结果[15]，如下所示： 

( ) ( )2
1 2 2

0
ˆ: sup ,t

ss

t
g g t dϕ ϕ ϕ∞ −

+
≤ <+∞

  ′∈ × < +∞  
= ∫



   ， 

( )1 2 2
0

ˆsup ,
t

s
s

t
g g t dϕ ϕ ϕ∞ −

≤ <+∞

 =   ∫



， 

( ) ( ){ }2
11 2

0
ˆ: ,t g g t d dL ϕ ϕ η ϕ

∞

+
′∈ < ∞= × +∫ ∫



  ， 

( )1 21 0
ˆ ,

t

t

L g dg t dϕ ϕ η ϕ= ∫ ∫



。 

2.3. 主要的引理 

引理 2.1 [25]设 1 1
2

s≤ ≤ ，则有如下不等式成立 

( )
( )

( )
2 1

2 1 1 2 1 22
2

s
s s sϕ ξ ϕ ξ ξ ϕ ξ

−
− − −≤ − + − ， 

其中 2,ϕ ξ∀ ∈ 。 
引理 2.2 [26]设 0 , 0 1t sπ< ≤ < ∞ ≤ ≤ ，则有如下不等式成立 

( ) 22 21 1
2 2

s s s st m t m m n nπ π π− − − ≤− − ， 

其中 2,m n∀ ∈ 。 

3. 定理 1.1 的证明 

为了得到方程 (1)的解，我们先将方程 (1)换成积分形式，具体步骤如下：首先对线性系统 
0s

tθ ν θ∂ + Λ = 进行傅里叶变换再积分得到 

( )ˆ s tC t e ν ϕθ −= ⋅ ， 

并且满足 0t = 时， 0̂ Cθ = ，因此记 ( ) 

0 0

s tC t e ν ϕθ θ−= 。 
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接下来考虑方程(1)。令齐次方程的通解为 ˆ s tCe ν ϕθ −= ，将其代入方程(1)得 

( ) 

s tC t e ν ϕ θ−′ = − ⋅∇u ， 

则 

( ) 

0

st
C t e d Cν ϕ η θ η = − ⋅∇ + ∫ u ， 

故 



( )


0 0
ˆ s stt te e dν ϕ ν ϕ ηθ θ θ η− − −  = − ⋅∇ ∫ u ， 

因此我们就得到了方程(1)积分形式为 

( ) ( ) ( )0 10

ss t ttt e e dη ννθ θ θθ η− − Λ− Λ ⊥= − ∇ ⋅∫   。                        (5) 

其中利用了 ( ) ( )1θ θ θθ⊥⋅∇ = ∇ ⋅ = ∇ ⋅u u   。 
对上面的积分形式应用 Fourier 变换，我们得到 

 ( )  ( ) ( )
 ( ) ( )

2

0
0

ˆ, , ,
s stt tt e e p d dν ϕ η ν ϕθ ϕ ϕ ϕ θ ϕ ξ η θ ξ η ξ ηθ− − −= + −∫ ∫



。                (6) 

这里的 2 1 1,i ip ϕ ϕ ϕ
ϕ ϕ ϕ

 
=   
 

是一个有界的 Fourier 乘子，在估计中忽略这一项。 

先估计 1 2s
t
∞ −  中的θ ，在(6)式两边乘以

1 2sϕ −
可得 

 ( )  ( )
( )

 ( ) ( )2

1 2 1 2
0

1 2

0

,

ˆ                     , ,

s

s

s st

t st

t e

e d d

ν ϕ

η ν ϕ

θϕ ϕ ϕ θ ϕ

ϕ ϕ θ ϕ ξ η θ ξ η ξ η

− −−

−− −

≤

+ −∫ ∫


。               (7) 

利用引理 2.1，可以估计非线性项 

 ( )  ( )2
1 2

0
, ,

t s d dϕ ϕ θ ϕ ξ η θ ξ η ξ η− − ∫ ∫


 

( )
 ( )  ( )1 22 1

0 0
2 , sup ,ss

t
d tθ η η θ

∞ −−

≤ <+∞

  ≤ ⋅ ⋅ ∗ ⋅ ⋅     ∫ 。                      (8) 

考虑方程(7) (8)，并应用 Young 不等式得 
( )

1 2 1 1 1 21 2
2 1

0 2s ss
t t t

s
Lθ θ θ θ∞ − ∞ −−

−≤ +
    。                       (9) 

接下来估计 1 1
tL ，式(6)两边乘以 ϕ 有 

 ( )  ( )2 1 2
0,

ss stt e ν ϕϕ θ ϕ ϕ ϕ θ ϕ−−=  

( )
 ( )  ( )

2 2 2

0 0
, ,

ss st tte d dη ν ϕϕ ϕ θ ϕ ξ η θ ξ η ξ η
−

− −+ −∫ ∫ 。                   (10) 

利用
2 | |

0

ss te dtϕϕ
∞ − < ∞∫ 和 Young 不等式有 

( )
1 1 1 1 1 21 2

2 1
0

1 1 2 ss
t t tLL

sθ θ θ θ
ν ν

∞ −−
−≤ +

   
。                     (11) 

定义 1 2 1 1
1 2 1 1: , : s

t t

s
t t LS L H θ ν θ∞ −
∞ −= ∩ = +

 
  由式(9)和(11)得 
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( ) ( ) ( ) ( )L L L1 2 1 1 1 1 1 2 1 1 1 21 2 1 2

22 1 2 1
0 02 2 2 2s s ss s

t t t t t t

s s
L L Lθ ν θ θ θ θ θ θ θ∞ − ∞ − ∞ −− −

− −+ ≤ + × ≤ + +
      

， (12) 

即 ( )
1 2

2 1 2
02 s

sH H θ −
−≤ +


。 

通过选择 ( )
1 2

2 1
01 4 2 s

sψ θ −
−= − ×


，并应用 Banach 不动点原理，对于属于 1 2s− 的小初始数据，很容

易得到解在 s 中的全局存在性。 

4. 定理 1.2 的证明 

定理 1.2 证明的构造遵循了 Lemarié-Rieusset 的思想，展示了解的解析性，即 

( )
2

2

0

ˆsup sup ,
s st

t
e tϕ

ϕ
ϕ θ ϕ

< <∞ ∈

< ∞


。 

假设 ( ) ( ), ,
stf z t e z tϕ θ= 考虑积分形式(5)可以写为 

( ) ( ) ( )0 10
,

s s ss tt t ttf z t e e e e dϕ ϕ ηθ θθ η− − Λ− Λ ⊥= − ∇ ⋅∫   。                  (13) 

容易得到 

 ( ) 

2

0,
s st tf t e ϕ ϕϕ θ−≤  

( )
 ( )  ( )( )2

20
, ,

s st t te d dϕ η ϕ ϕ θ ϕ ξ η θ ξ η ξ η− −+ −∫ ∫


。                   (14) 

利用引理 2.2 有 

( ) ( )21 1
2 2

s s s st t
e e

ϕ η ϕ η ϕ ξ ξ− − − − +
≤ ，                            (15) 

且因为 

( )221 1 1 11
2 2 2 2

s s st t t
e e e

ϕ ϕ ϕ− − − +
= ≤ 。 

利用不等式(15)，有 

 ( ) 

1
2 0,

st
f t e

ϕ
ϕ θ

−
≤  

( )
 ( )  ( )( )

2

2

1
2

0
, ,

stt
e d d

η ϕ
ϕ θ ϕ ξ η θ ξ η ξ η

− −
+ −∫ ∫



。                     (16)  

定理其余部分的证明步骤与定理 1.1 的证明步骤相同。 

5. 结论 

本文研究了二维不可压缩多孔介质方程(IPM)在 Lei-Lin 型空间 ( )1 2 2s−
 框架下的 Cauchy 问题。我

们证明，当初始数据 0θ 在 1 2s− 范数下充分小时，方程存在唯一的全局解 1 2 1 1s
t tLθ ∞ −∈ ∩   ，并进一步建

立了解的 Gevrey 正则性，即解被指数 Fourier 乘子
ste ϕ
控制。这一结果从数学上表明，在分数阶耗散 

1 1
2

s s Λ ≤ ≤ 
 

作用下，IPM 方程的解不仅全局正则，且具有瞬时解析光滑效应。研究的意义在于将 Lei- 

Lin空间系统应用于具有非局部速度的 IPM 方程，为这类临界耗散模型提供了适定性与正则性分析框架。 
本文的结论仍存在若干局限，一是当前结果依赖小初值假设，二是局限于二维情形，三是仅考虑分

数阶拉普拉斯耗散，未来可考察各向异性、部分耗散或其他非局部耗散机制下的解性态；还可探讨无粘

性极限 ( )0ν → 及相应边界层问题。 
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从物理视角看，解的解析性反映了多孔介质中扩散过程对密度扰动的快速抑制，该结论可为渗流与

混溶驱替过程的建模与模拟提供理论参考。后续可结合数值实验，进一步验证解析正则性在实际流动混

合中的作用。 
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