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Abstract

This paper investigates the Cauchy problem for the two-dimensional incompressible porous me-
dium equation. First, we transform the original equation into an equivalent integral equation via
the Fourier transform. Subsequently, within the framework of Lei-Lin-type function spaces, we sys-
tematically analyze the estimates of both the linear and nonlinear terms. Based on the Banach fixed-

point theorem, we prove that when the initial data ||t90 || i-2s is sufficiently small, there exists a unique
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global solution to the equation. Furthermore, we establish the analyticity of the solution.
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