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摘  要 

设K是高斯域，aK(n)是 [ ]i 中范数为n的非零整理想的个数。本文建立了高斯域上离散数列短区间上以

( ) ( )l

Ka n l2 +∈ 加权的Erdös-Kac型定理，将使用推广的Selberg-Delange方法来研究此定理。 
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Abstract 
The Gaussian domain is the number of non-zero integer ideals in the middle norm. This article has 
established a high. The Erdös-Kac type theorem, which is weighted by N on the short interval of 
discrete sequences on the Squain, will use the generalized. The Selberg-Delange method is used to 
study this theorem. 
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1. 引言 

设 K 是有理数域上的 d 次代数扩张，类似于有理数域上的 Riemann zeta 函数，可以定义数域 K 上

对应的 Dedekind zeta 函数 

( )
( )

( )1 , 1K s
a

s s
a

ζ = ℜ >
ℜ

∑  

其中 aℜ 是一个非零整理想 a 的范数。又定义理想计数函数 ( )Ka n 为数域 K 的整环 K 上范数为 n 的非零

整理想的个数，则 Dedekind zeta 函数可以改写为 

( ) ( )
1

K
K s

n

a n
s

n
ζ

≥

= ∑  

函数 ( )Ka n 在代数数论中有着非常重要的作用，由于它的分布是不规律的，许多数学家都致力于研

究 ( )Ka n 的均值渐近估计。1927 年，Landau [1]给出了一个关于 ( )Ka n 渐近公式并给出了证明，其中 K 为

有理域上的阶数为 2d ≥ 的代数数域，有 

( )
21

1d
K

n x
a n cx O x

ε− +
+

≤

 
= +   

 
∑ ， 

其中 c是 ( )K sζ 在其简单极点 1s = 处的常数， 0ε > 是一个任意小的常数。 
Landau 的结果是很难被改进的，1993 年，Nowak [2]证明了对于扩张次数 3d ≥ 的代数数域 K 有如下

结果 

( )

( ) ( )

( )2

2 8 101
5 2 5 2

2 3 21
2

log ,3 6,

log , 7.

d d d d

K
n x

d d d

O x x d

a n cx

O x x d

− +
+ +

≤ − +

  
   ≤ ≤

   = + 
 

≥     

∑  

当 K 为有理数域上的阶数为 2d ≥ 的伽罗瓦扩张。2010 年，Lü 和 Wang [3]给出了 ( )Ka n 高次的均

值渐近公式，对于 0ε∀ > 和任意整数 2l ≥ ，有 

( ) ( )
31

6log ll d
K ln x a n xP x O x

ε− +
+

≤

 
= +   

 
∑  

其中 ( )lP t 关于 t 阶为 1 1ld − − 的一个多项式。 
Lü 和 Yang 给出了在二次域 K 上 ( )l

Ka n 在平方处的渐近公式。对于任意整数 1l ≥ ， 

( ) ( )
312 2 2log

l
m

K mn x a n xP x O x
ε− +

+
≤

 
= +   

 
∑  
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其中
3 1

2

l

m +
= ， ( )mP t 是关于 t 阶为 1m − 的多项式， 0ε > 是一个任意小的正常数。 而且，当 3l ≥ 时，得 

到了更精确的误差项为 

( ) ( )
312 2 1log

l
m

K mn x a n xP x O x
ε− +

−
≤

 
= +   

 
∑  

2015 年，Zhai [4]给出算术函数 ( )2
Ka n 的均值渐近公式和最优余项，其中 K 为有理域 [ ]i上的阶数

为 2d = 的一个扩张，有 

( ) ( )( )2 31 2
0 1log logKn x a n B x x B x O x x

≤
= + +∑  

其中 D 为 K 的判别式， 

( )2
0 2

|

6 1,
1D

p D

pB L
p

χ
+π

= ∏  

( ), DL s χ 是 Dirichlet L 函数，且 Dχ 为模 D 的非主实特征。Zhai 还证明了 ( )2
Ka n 在短区间上的均值

渐近公式估计，当 ( ) ,y o x x= →∞，有 ( )1 2 logy x x →∞时间，有 

( )2
0~ logK

x n x y
a n B y x

< ≤ +
∑  

算术函数分布问题的讨论可以从概率的观点出发。1939 年，Erdös 和 Kac [5]利用概率的观点证明了

( )nω 在集合{ }:n N n x∈ ≤ 上的概率分布近似于高斯分布，即对任意 λ∈，有 

( ) ( )
( )

1 2
2 2, log log

1 1 ,
n x n x x

x
x ω λ

λ
≤ − ≤

→Φ →∞∑  

研究加权 Erdös-Kac 定理的关键工具是推广的 Selberg-Delange 方法。1954 年至 1971 年间，Selberg 
[6]和 Delange [7] [8]利用与算术函数相关的 Dirichlet 级数的解析性质，了一种相当普遍的方法，是现在所

知 Selberg-Delange 法。设 ( )f n 为算术函数，相对应的 Dirichlet 级数为 

( ) ( )
1

: s
n

f n
F s

n

∞

=

= ∑  

假设 ( )F s 可以分解 

( ) ( ) ( ); zF s G s z sζ=  

1sℜ > ，其中 ( )sζ 是 Riemannζ 函数， z∈，我们可以应用 Selberg-Delange 方法建立和函数 

( ) ( ):f
n x

S x f n
≤

= ∑  

精确的渐近公式。Tenenbaum 在文献[9]中对这个理论进行了很好的阐述。 
近些年，Lau 和 Wu[10]，Gui，Lü 和 Wu [11]，M. Tip Easter Phaovibul [12]，Wu 和 Wu [13]和 Labihi

和 Raoujand 等一些数学家在不同的方向和领域推广了 Selberg-Delange 方法。利用上面推广的方法，Liu 
和 Yang [14]建立了在短区间上加权为 ( ) ( )2 l

Ka n l +∈ 的 Erdős-Kac 型定理，其中 K 是高斯域， ( )Ka n
是 [ ]i 上范数为 n 的非零整理个数。Wang [15]利用了Labihi的方法建立了在离散短区间上加权为 ( )d n α

的 Erdös-Kac 型定理，其中 ( )d n 是除数函数。在本文中我们将利用 Wang 的方法推广 Liu 和 Yang 的相

关结果，即研究高斯域 [ ]i上短区间内离散算术序列上 ( )2
Ka n 加权为的 Erdös-Kac 型定理。定义和函

数为 
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( ) ( )
( )

2, :
l

Kl
x g n x y

x y a n
< ≤ +

= ∑

 

其中 ( ) ( )g n nh n= ，对于任意的 1n ≥ ，有 

( ) ( ) 10, ,h n h n
nβ>   

( )
log 1 1limsup ,0

log 1 3
n

g n
β

β
≤ <

−
  

( ) ( )21 , , 1, 0h p h p γ η γ
η

= = > >  

对于任意的素数 p，我们得到了如下定理。  
定理 1.1. , 0l R ε∈ > ，对于每个实数 λ ，有 

( ) ( )
( ) ( ) ( )

( )
( )1 2

2 2

2
1 2

2, 3 log 3 log

1 1
, logl l

l

K
l x g n x y n x x

a n O
x y xω η η

φ λ
< ≤ + − ≤

 
 = +
 
 

∑


 

当 x →∞和
24

19x y xε+ ≤ ≤ ，隐含常数取决于 , , , ,l η γ β ε ，此时误差项也是最优的。 
为了证明误差项的最优性，下面给出 Laudan 素数定理。对 l R∈ 和 k Z∈ ，定义 

( ) ( )
( ) ( )

2
,

,
, :

l

KK l
x g n x y n k

x y a n
ω< ≤ + =

= ∑

 

得到以下的结果。 
定理 1.2. , 0l R ε∈ > ，有 

( )
( )

( ) ( ) ( ) ( )
( )

1 2
2 2

1 2 2,
2 2

3 log log1 1, : , ,
log 1 ! log3 log log

kl

lK l

x xy k kx y Y I l I l O
x k k xx x

η

η

−
   − −  = × + +    −     



 

其中 

( ) ( )( ) ( ) ( )

( )
( ) ( )

3 3

1 2
11 mod4 1 mod4

2 13 1 11 , 1 , 1 1 1
3 1

l lz zll

l v
vp p

z v
Y l l z

p pz g p

η η
η
η

−

≥≡ ≡−

 +    = − + −    Γ +     
∑∏ ∏  

2. 若干引理 

假设 :f N ∗ →是一个算术函数， [ ): 0,g N ∗ → ∞ 为满足下述条件的算术函数 

lim ( )
n

g n
→∞

= ∞，
( )

loglogsup
log

n
g n

κ= ∈  

设复数 s itσ= + ，其中σ 和 t 均为实数。定义 Dirichlet 级数 

( ) ( )
( )1 sn

f n
F s

g n
∞

=
= ∑  

在 cσ σ≥ 内收敛，且绝对收敛，其中 cσ σ κ≥ + 为方便后面描述，下面给出两个定义。 
定义 2.1. 按横坐标收敛的 Dirichlet 级数 ( ) ( ) ( )1

s
nF s f n g n −∞

=
= ∑ 是 ( )1 1 2, , , , ,P A M M l lσ 型的，若满

足下列条件：  
(1) ( )g n 是实值算数函数，使得 [ ): 0,g N → ∞ ， ( )g n 随着 n →∞趋于无穷大，并且 
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( )
loglimsup

logn
n

g n
κ→∞ =  

对于任意的 0κ ≥ 。  
(2) ( )F s 满足 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )1 2
1 2, , 2 , 1l s l sF s G s l s l s s sζ ζ σ= ⋅ ⋅ >  

(3) 函数 ( ) ( )( )1 2, ,G s l s l s 在区域
1
2

σ > 且满足 

( ) ( )( ) ( ) ( ){ } ( )max 1 ,0
1 2, , 3 log 3AG s l s l s M t t

σ σ−
≤ + ⋅ +  

(4) 函数 ( ) ( )1 2,l s l s 在区域
1
2

σ > 内是解析的，且满足 

( ) ( )1 1 2 2
1, , , 2
2

l s M l s M σ ε ≤ ≤ ∈ +  
 

定义 2.2. 假设 Dirichlet 级数 ( ) ( ) ( )1
s

nF s f n g n −∞

=
= ∑ 具有 ( )1 2 1 2, , , , , ,P A M M M l lσ 性质，则称 ( )F s

是 ( )1 2 1 2 1 2, , , , , , , ,A M M M l l l lτ σ   型的，如果存在一个正实数列 ( ) 1nf n+
>

 使得 

( ) ( ) , 1f n f n n+≤ ≥  

和 Dirichlet 级数 

( ) ( )
( )1

: s
n

F n
F s

g n

+∞
+

=

= ∑


  

是 ( )1 2 1 2, , , , , ,P A M M M l lσ   型的。 
首先，我们给出了 Labihi 和 Raoujand 在短区间 Selberg-Delange 方法上的一般结果，这对定理 1.1 的

证明起着关键作用。 
引理 2.1 假设 Dirichlet 级数 ( ) ( ) ( )1

s
nF s f n g n −∞

=
= ∑ 是 ( )1 2 1 2 1 2, , , , , , , ,A M M M l l l lτ σ   型的，那么对于

任意的 0ε > ，有 

( )
( )

( ) ( ) ( ) ( )( )1 1 1 2
1 2

, 1

loglog ,
log

l

x g n x y n

xf n y x l s l s O
x

λ−

< ≤ + ≥

   = ⋅ +  
   

∑  

对于 2x ≥ ， x y xθ ε+ ≤ ≤ ，
( )

1: 1
24 5 2

θ
δ

= −
+

， ( )1 1l s M≤ ， ( )2 2l s M≤ ，其中 

( ) ( )( ) ( ) ( )( ) ( ) ( )

( )( )
2 1

1 2
1 2

1

1, , 2
1 , 1 :

1

lG l s l s
l l

l
ζ

λ =
Γ

， ( ) ( )( ) ( ) ( ) ( ) ( ) ( )1 2
1 2, , : 2l s l sG s l s l s F s s sζ ζ− −=  

O 项的隐含常数只 1 2, , , , ,a A M M δ ε 有关。  
对于定理 1 的证明，本文使用了加性函数理论中的高斯误差定律和 Berry-Esseen 不等式。  
引理 2.2 让 ( )f n 是满足 ( ) ( ) ( )1 2 1 2f m m f m f m= + ，其中 ( )1 2, 1m m = ，假设 

( ) ( ) 2

p n

f p
F n

p<

= ∑  

发散，那么 
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( ) ( ) ( )2
p m

f p
f m F m

p
ω

<

< +∑  

等价于 

( )21 exp dy y
ω

−∞π
−∫  

对于任意的实数ω 。  
假设 ( )F x 是一个满足 ( ) 0F −∞ = ， ( ) 1F ∞ = 的分布函数。定义 ( )F x 的特征函数为 

( ) ( ): e di xf F xττ
∞

−∞
= ∫  

引理 2.3 设 F ，G 为分布函数，分别具有特征函数 f ， g ，设G 可微且G′在 R 上有界，则 

( ) ( )16 6 d
T

T

G f g
F G

T
τ τ

τ
τ

∞
∞ −

′ −
− ≤ + ∫  

对于 0T > ，其中，对于任意实值函数 ( )H x ， ( ): sup RH Hλ λ∈∞
= 。 

为了证明定理 2，下面给出了一个关于 ( ) ( )2 l n
Ka n zω 更一般的求和公式。  

引理 2.4 让 0, , 0B z B ε> ≤ > ，那么 

( ) ( )

( )
( ) ( ) ( )( )3 12 2

1 2
loglog 1 , 1 ,
log

ll zn
K

x g n x y

xa n z y x zY l l z O
x

ηω −

< < +

   = +  
   

∑  

对于 2x ≥ 和 19 24x y xε+ ≤ ≤ ，其中 

( ) ( )( ) ( )
( )
( )

3 3

1 2
11\ mod4 1\ mod4

2 13 1 11 , 1 , 1 1 1
3 1

l lz zll

l v
vp p p p

z v
Y l l z

p pz g p

η η
η
η

−

≥≡ ≡−

 +    = − + −    Γ +     
∑∏ ∏  

特别地 

( ) ( ) ( ) ( )( )3 1 2
1 1 2

log, log 1 , 1 ,1
log

l xU x y y x Y l l O
x

η−  
= × +  

 
 

对于 2x ≥ 和 19 24x y xε+ ≤ ≤ ，其中 

( ) ( )( )
( )

( )( )

( )

( )

( )
( )

( )

( )

1 3 3 1 3 1

2 2 2

1 2
11 mod4 1 mod4

2 12 1 11 , 1 ,1 1 1 1
3 1 2

l l l

l

vl
vp p

v
Y l l

p pg p

η η η

η

− + −

∞

≥≡ ≡−

 +    = − + −    Γ +     
∑∏ ∏  

证明定理 2. 定义 

( ) ( )
( ) ( )

2
,

,

l

Kk l
x g n x y n k

U a n
ω< < + =

= ∑  

并且假设 

( ) ( )

( )
( ) ( )2

, ,
l n k

K k l
x g n x y k

a n z U x y zω

< < +

=∑ ∑  

由柯西积分公式可得 

( ) ( )

( )

2
1, 2

1 dl n
K k

x g n x
k l z

y
r

U za n z
i z

ω
+

<
=

< +

 
=  

π 


∑∫  
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其中
( )3 log 2l

kr
xη

= ，由定理 2.4，可以推出 

( ) ( )
( )

( )3
2

, , 2 1

log
log
log, , d

log

l z

k l k l kz r

xy xyU x y I x r O z
x zx

ηℜ

+=

 
 = +
 
 

∫  

对于任意的 19 24
22, , , 3 loglx x y x z B k xη+≥ ≤ ≤ ≤ ≤ ，其中 

( ) ( ) ( ) ( )( )3
1 2

,

log 1 , 1 ,1, : d
2

l z

k l kz r

x Y l l z
I x r z

i z

η

=
=

π ∫  

对于 ( ), ,k lU x y 的误差项，有以下的估计 

( )

( )

( )

2 cos2
11 0

2 cos2
0

2 1 22
0

2

log 3 3 logd e d

3 log e d 1

3 log e d 1

3 log
!

kl l
k

kz

kl
k

kl
t

kl

x z xz
kz

x
k

x t t
k

x
k

θ

θ

η η θ

η θ

η

η

π

+=

π

π − − 

ℜ  
=  

 

 

 
+ 

 

+

 


 


 

∫ ∫

∫

∫









 

其中用 ( )1 cost k k θ= − 进行替换。  
下面来估计 ( ), ,k lI x y 在 1k = 和 2k ≥ 的两种情况下。对于 1k = ，当 z B≤ 时，当 ( ) ( )( )1 21 , 1 ,Y lz l z→ ，

由柯西积分公式有， 

( ) ( ) ( ) ( )( )

( ) ( )( )

3
1 2

,

1 2

log 1 , 1 ,1, : d
2

1 , 1 ,0 3

l z

k l kz r

l

x Y l l z
I x r z

i z
Y l l

η

η

=
=

π
= =

∫  

代入(3.1)，可以推出 

( ) ( )2
2

1, ,
log3, 1

log log

l

l l
xyU x y O

x x
η     = +     

  

对于 2k ≥ ，当 z B≤ 时，当 ( ) ( )( )1 21 , 1 ,Y lz l z→ ，由柯西积分公式有， 

( ) ( ) ( ) ( ), , 0 0 2, , , 1 3 logl
k l k lI x r I x r r k xη= = −  

在 0z r= 处 ( ) ( )( )1 21 , 1 ,Y l l z 的泰勒展开是 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )( )

( ) ( ) ( ) ( ) ( )( )
1 2 1 2 0 1 2 0 0

12
0 1 2 0 00

1 , 1 , 1 , 1 , 1 , 1 ,

1 1 , 1 , d

Y l l z Y l l r Y l l r z r

z r t Y l l r t z r t

′= + −

′′+ − − + −∫
 

下面将估算(3.3)右边三项对 ( ), 0,k lI x r 的贡献。根据柯西积分公式，第一项的贡献是 

( ) ( )( ) ( ) ( )
( ) ( ) ( )

2
1

3 log
21 2 0 0

1 20
2

3 log1 , 1 , e 1d 1 , 1 ,
2 1 ! 3 log

l klz x

k lz

xY l l r z r kz Y l l
i kz x

η η

η

−

=

−  −
=  π −  

∫  
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同样的，第二项的贡献是 

( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( )
( )

( )

0

3
1 2 0 2 0

1 2 0

1
2

22
1 2 0 0

1 , 1 , e
1 , 1 , d

2

3 log(3 log )1 , 1 ,
2 ! 1

og

!

l

0

lz

kz r

kll k

Y l l r x z r
Y l l r z

i z

xxY l l r r
k k

η

ηη

=

−
−

′ −
′

π
 
 ′= − − − 
 

=

∫

 

当 0 1t< ≤ 和 0z r= 时。其中， 

( ) ( ) ( )0 0 0 0 01 1r t z r r t tz r t t z r+ − = − + ≤ − + =  

由 ( ) ( )( )1 21 , 1 ,Y l l z 对 z B≤ 的解析性可知，存在一个正常数Cα ，使得 ( ) ( )( )1 21 , 1 ,Y l l z Cα′′ < ，以下是第三

项对 ( ), 0,k lI x r 的贡献 

( ) ( ) ( )

( ) ( ) ( )( )
( ) ( ) ( )

( )
( )

0

23
223 1 cos0

0 0

23 1 cos
0 0

13 23 1 1 2
0 0

3

2

log
d e e 1 d

e 1 cos d

e 1 e d

3 log

2 !

l z
k k i

kz r

k k

kk k t

kl

x z r
z r

z

r

r k t t

x

k

η
θ θ

θ

θ

θ θ

η

ℜ
π− − −

=

π− − −

−− − − − −

−

−

−
−

− + π

− + π

−

∫ ∫

∫

∫











 

其中用到了 ( )( )1 1 cost k θ= − − 进行替换。将(3.2)，(3.4)，(3.6)带入(3.1)，可以得到 

(3.7) 

( )
( )

( ) ( ) ( )

( )
( ) ( )

( )

1

2
, 1 2

2

3

2 22
2

3 log 1, 1 , 1 ,
log 1 ! 3 log

3 log 3 loglog
! log 2 !log

kl

k l l

k kl l

xy kU x y Y l l
x k x

x xy x yO
k x kx

η

η

η η

−

−

 −
=  −  

 
 + + − 
 

 

证明定理 1. 定义 

( ) ( ) ( )

( ) ( )

( )
1
22 2

2
,

3 log 3 log

1:
,

l l

l

x y K
x g n x yl

n x x

F a n
U x y

ω η λ η

λ
< ≤ +

− ≤

= ∑  

让 ,x yϕ 是 ( ),x yF λ ，例 

( ) ( )

( ) ( )
( ) ( )

, ,

22

2

: e d

3 log1
, 3

e
g

xp
lo

i
x y x y

l
l

K lx g n x yl

F

n x
a n i

U x y x

τλϕ τ λ

ω η
τ

η

∞

−∞

< ≤ +

=

 − =  
  

∫

∑
 

( ) ( )
( ) ( ) ( )2e e

,

i T l i T n
K

x g n x yl

a n
U x y

τ
τ ω

−

< ≤ +

= ∑  

其中 23 loglT xη= ，由引理 2。3 ( ),, ,x yF G F= Φ ，可以得到以下 
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( ) 2 2
,

,

e16 6 d
2

T x y
x y T

F
T

τϕ τ
τ

τ

−

−∞

−
−Φ ≤ +

π ∫  

其中
1
2π

是Φ 的最大值，下面需要得到 

(4.2) 
( ) 2 2e 1d

T xy

T T

τϕ τ
τ

τ

−

−

−
∫   

对于 19 242,x x y x+≥ ≤ ≤ 。将 eitz = 应用到引理 2.4，可以推出 

( ) ( )
( ) ( ) ( ) ( ) ( )3 e 12 21 e log e lo

g
g

, lo
l itl it n it

K
x g n x yl

xa n x A O
U x y x

ηω −

< ≤ +

   = +  
   

∑  

对于 19 24, 2,t R x x y x+∈ ≥ ≤ ≤ ，并有 

( ) ( ) ( )( )
( ) ( )( )

1 2

1 2

1 , 1 ,
:

1 , 1 ,1
zY l l z

A z
Y l l

=  

对于 z B≤ 是解析的函数，其中 ( ) ( ) ( )( ) ( ) ( )( )1 2 1 21 1; 1 , 1 , , 1 , 1 ,1A Y l l z Y l l= 是引理 2.4 中所定义的。 将
t Tτ= 带入上面的渐近公式，可以得出 

(4.3) ( ) ( ) ( ) ( )3 e 1 2
, log

l
ge

o
oe

g
ll i T

i T i T
x y

xx A O
x

τη τ τϕ τ − −    = + 
 

 
 

 

对于任意 19 242,x x y x+≤ ≤ ≤ 和 Tτ ≤ ，对于 ( )2cos 1 2t t− ≤ − π ， 1t ≤ 有 

( ) ( ) ( )( ) ( )2213 e cos 1 2log e e e
l i T T Ti Tx

τη τ ττ− − − π− = ≤  

因此，可以推出 

( ) ( )22
, ex y

τϕ τ − π
  

对于任意 19 242, ,x x y x Tτ+≤ ≤ ≤ ≤ 。有以下的结论 

(4.4) 
( ) ( )

2
2

1 3 1 3

2
2e 1d e d

T Txy

T T T

τ
τϕ τ

τ τ
τ

−
± − π

±

−
∫ ∫   

对于任意 ( ) 1 1 3log x Tτ− < ≤ ，利用泰勒展开 

( ) ( )e 1i TA O Tτ τ= +  

( ) ( )( )2 31e 1
2

i T i T T O Tτ τ τ τ− = − +  

从而可以得到 

( ) ( ) ( ) ( )

( )2 3

2

3 e 1

2

3
2

log e e

e 1

e 1

l i T i Ti T

O T

x A

O
T

O
T

τη ττ

τ τ

τ

τ

τ τ

− −

− +

−

   = +  
   

  +  = +     
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将上述式子代入(4.3) 

( ) 2
3

2 2
,

loge 1 1
logx y

xO O
T x

τ τ τ
ϕ τ −

    +     = + +           
 

对于任意 ( ) 119 24 1 32, , logx x y x x Tτ−+≤ ≤ ≤ < ≤ ，通过对 ( ),x yϕ τ 的估计，可以推出 

(4.5) 

( )

( )

2
1 3 1 3 2

2
, 2

1 log 1 log

2

2
2e 1d e d

log

log1 1
log

logT Tx y

x x

x
T x

x
T x T

τ
τϕ τ ττ τ

τ τ

−
± −

±

− +
+

+

 
 
 

∫ ∫

 

 

对于任意 ( ) 1log xτ −≤ ，平凡地 

( ) 2

2

log3 log

3 log

l

l

xn x
Tx

τω η
τ

η

−
 ，

( ) 2

2

log3 log
exp 1

3 log

l

l

xn x
i O

Tx

τω η
τ

η

   −  = +   
   

 

代入上述式子进入(4.1)，给出 

( )

( )2

,

22

log
1

e 1

x y
x

O
T

Oτ

τ
ϕ τ

τ−

 
= +  

 

= +

 

得到 

(4.6) 
( ) 2 2

1 log 1 log,

1 log 1 log

e log 1d d
x xx y

x x

x
T T

τϕ τ
τ τ τ

τ

−

− −

−  + 
 ∫ ∫   

现在(4.2)立即从(4.4)~(4.6)开始。最后，证明误差项是最优的。定义 

( ) ( ) ( )
( ) ( )

( ) ( )
1 2

2 2

2

3 log 3 log

1, :
,

l l

l

K
x g n x yl

n x x

R x y a n
U x yλ

ω η λ η

λ
< ≤ +

− ≤

= −Φ∏  

( ) ( ), : sup ,
R

R x y R x yλ
λ∈

=  

让， 2 23 log , 3 logl lk x k xη θ η = = −  那么 

(4.7) 

( )
( )

( )

( )

( )

22

2

,
, ,

2 2

2 2

3 log 2
1 3 log

3 3

1
2

1
, 3 3

, 3 log 3 log

1
3 3 2 ,

3 log 3 log

e d 2 ,

1 2 ,
3 3 log

l

l

k l
x y x yl l

l

l l

x

x

l

U x y
F F

U x y x x

R x y
x x

R x y

R x y
x

θ η τ

θ η

θ
θ

η η

θ
θ

η η

τ

η

−
 − 

π 

+

−  π = −
 
 

 −   π ≤ Φ −Φ  +
      

 
 

 

= +

≤ +
π

 
 
 
 

∫
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用 Stirling’s 公式，定理 2 和引理 2.4，我们可以推断出 

( )
( )

( ) ( )

( ) ( )( )
( )
( ) ( )

1
1 2

2, 2
3

1 2

11 , 1 , 3 log, 3 log
, 1 , 1 ,1 log 1 !

l

kll
k l

l

kY l l xU x y x
U x y Y l l x kη

ηη
−

 −
 
 

−
 

结合(4.7)和(4.8)，就可以得出 

( ) ( ) ( )
1 1 1

2 2 2

1 1 1 11,
2 3 log 6 3 log 3 3 logl l l

o o
R x y

x x xη η η+ + +

+ +
≥ − =

π π π
 

对于任意 19 242,x x y x+≤ ≤ ≤ 。 
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