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摘  要 

Göllnitz-Gordon函数是整数分拆理论中非常重要的函数，它与著名的Rogers-Ramanujan恒等式密切相

关。我们通过已知的连分数的2-剖分公式，通过奇偶分离的方法，得到了两个新的涉及Göllnitz-Gordon
函数的模关系。 
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Abstract 
The Göllnitz-Gordon function is a crucial function in the theory of integer partitions, closely related 
to the renowned Rogers-Ramanujan identity. By utilizing the known 2-dissection formulas for contin-
ued fractions and employing the method of separating odd and even terms, we have derived two new 
modular relations involving theGöllnitz–Gordon functions. 
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1. 引言 

在经典的分拆理论与 q -级数理论中，Göllnitz-Gordon 函数[1] [2]占据着重要的地位。它们源于数学

家 H.Göllnitz 和 B.Gordon 在 1960 年代的开创性工作，这两个函数分别为 
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从数论的角度看，它们与模形式理论紧密相连，揭示了分拆函数在模特定算术级数下的同余性质。

2011 年 Chadwick Gugg 证明了两个新的涉及 Göllnitz-Gordon 函数的立方的恒等式[3]，2016 年姚祥妹通

过新的方法，对已有的 2-剖分公式[4]将无穷乘积表示为 Göllnitz-Gordon 函数 ( )S q 和 ( )T q 的线性组合，

从而将模关系的证明转化为对这些组合的代数操作。通过分离偶次幂和奇次幂的项，将原等式拆分为两

个独立的恒等式，推导出了许多新的涉及 Göllnitz-Gordon 函数立方的模关系。本文利用已知的 2-剖分公

式，通过奇偶分离和替换变量等方法得到了两个新的涉及 Göllnitz-Gordon 函数的模关系。 

2. 预备知识 

这一节介绍后续研究用到的 q -级数的术语和符号。 
定义 1 假设 1q < ，对于任意非负整数 n ，有限 q 移位阶乘和 q 移位阶乘定义为 
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Jacobi 三重积恒等式为 
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(3)的一个重要的特例为 
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对于任意正整数 n ， nf 表示为 
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Göllnitz-Gordon 函数 ( )S q 和 ( )T q 满足下列恒等式 
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3. 主要结果 

模关系 1 
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注：Gugg [3]证明了如下模关系，与本文的结论并不矛盾。 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
3 2 3 2 6 8 12

2
1 3 4 24

2
3 3 2 4 6 24

2
1 3 8 12

,

.

f f f f
S q S q q T q T q

f f f f

f f f f
S q T q qS q T q

f f f f

− =

+ =

 

定理 1 对于(4)，用 q− 代替 q ，并使用 nf 表示可得到 
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在本文中 ( )f q 特别用 1f− 来表示，即 
3

2
1

1 4

.ff
f f− =                                     (10) 

Baruah, N.D 证明了如下 1 3f f 的 2-剖分公式[5] 
2 5 5 2

8 12 4 24
2 4 2 4 2 2
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f f f f f f f f f f

= +                            (11) 

Xia 和 Yao 证明了如下 1f 的 2-剖分公式[6] 
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令(15)的偶数部分相等，我们得到 
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对于(16)，用 q− 代替 2q ，利用(10)得到 
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模关系 1 得证。 
令(15)的奇数部分相等，我们得到 
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对于(18)，用 q− 代替 2q ，利用(10)得到 

( ) ( ) ( ) ( )
3 2 2 3 2

3 3 4 6 8 2 3 4 12
2 2 3 3 2

1 2 3 16 1 6 8
3 2 2 3 2 3 3 3

4 6 8 3 12 2 3 4 12 61 4 1 4
2 2 3 3 3 3 2 9

3 122 16 2 6 1 6 8 2
2 2 3 6

1 3 4 8 1 4 12
5 7 2

2 12 2 3 8

2

2

2 .

q f f f f f f f
S q T q qS q T q

f f f f f f f

f f f f f f f f f ff f f f
f ff f f f f f f f

f f f f f f f
f f f f f

−

− − −

−

−

+ = −

= × × − × ×

= −

         (19) 

模关系 2 得证。 

4. 结束语 

本文探讨并建立了两个新的涉及 Göllnitz-Gordon 函数的新模关系。通过已知的连分数的 2-剖分，通

过奇偶分离的方法，可以系统地构造一系列新的涉及 Göllnitz-Gordon 函数的模关系。涉及 Göllnitz-Gordon
函数的模关系是连接 q -级数、数论、模形式理论的关键环节，其理论价值和重要性不仅体现在对经典模

关系体系的拓展，更在于为组合数学、数论等领域的问题解决提供了新的工具和视角。此外，还有其他

方法可以证明涉及 Göllnitz-Gordon 函数的模关系。例如 2011 年 Chadwick Gugg 通过另外的方法证明了

两个新的涉及 Göllnitz-Gordon 函数的立方的模关系。今后可研究是否这两种方法可以共同证明相同的模

关系，是否可以得到新的模关系。 

参考文献 
[1] Göllnitz, H. (1967) Partitionen mit Differenzenbedingungen. Journal für die reine und angewandte Mathematik, 225, 

154-190. https://doi.org/10.1515/crll.1967.225.154  
[2] Gordon, B. (1965) Some Continued Fractions of the Rogers-Ramanujan Type. Duke Mathematical Journal, 32, 741-748.  

https://doi.org/10.1215/S0012-7094-65-03278-3  
[3] Gugg, C. (2012) Modular Equations for Cubes of the Rogers-Ramanujan and Ramanujan-Göllnitz-Gordon Functions 

and Their Associated Continued Fractions. Journal of Number Theory, 132, 1519-1553.  
https://doi.org/10.1016/j.jnt.2012.01.005  

[4] Xia, E.X.W. and Yao, O.X.M. (2014) Parity Results for 9-Regular Partitions. The Ramanujan Journal, 34, 109-117.  
https://doi.org/10.1007/s11139-013-9493-z  

[5] Baruah, N.D. and Ojah, K.K. (2012) Analogues of Ramanujan’s Partition Identities and Congruences Arising from His 
Theta Functions and Modular Equations. The Ramanujan Journal, 28, 385-407.  
https://doi.org/10.1007/s11139-011-9296-z  

[6] Xia, E.X.W. and Yao, O.X.M. (2012) Some Modular Relations for the Göllnitz-Gordon Functions by An Even-Odd 
Method. Journal of Mathematical Analysis and Applications, 387, 126-138. https://doi.org/10.1016/j.jmaa.2011.08.059  

 

https://doi.org/10.12677/pm.2026.161005
https://doi.org/10.1515/crll.1967.225.154
https://doi.org/10.1215/S0012-7094-65-03278-3
https://doi.org/10.1016/j.jnt.2012.01.005
https://doi.org/10.1007/s11139-013-9493-z
https://doi.org/10.1007/s11139-011-9296-z
https://doi.org/10.1016/j.jmaa.2011.08.059

	两个涉及Göllnitz-Gordon函数的模关系
	摘  要
	关键词
	Two Modular Relations Involving the Göllnitz-Gordon Functions
	Abstract
	Keywords
	1. 引言
	2. 预备知识
	3. 主要结果
	4. 结束语
	参考文献

