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Abstract

Idempotents are a type of important elements in a ring. An element « is idempotent, if and only if
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a’ =a . Any ring containing a unity typically has two idempotent elements, namely 0 and 1, which
are called the trivial idempotents. However, in rings such as Z, and Z,|[x], there may exist non-

trivial idempotents. This paper studies the idempotents in the polynomial ring szqz [x] ,where p,

q are distinct primes, and further investigates the forms and properties of non-trivial idempotents

in the 2x2 matrixring M, (szqz [x]) The study shows that there are four idempotent elements

in Z,,zqz [x] and seven non-trivial idempotent matricesin M, (szqz [x]) . The set of idempotents of

aring R is denoted by Id (R).
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% 1 det(4)=0
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b(x):b(x)(a(x)—i-d(x)), c(x):c(x)(a(x)+d(x))
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2 _[az(x)+b(x)c(x) b(x)(a(x)—l—d(x))}z{a(x) b(x) j’
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DOI: 10.12677/pm.2026.161013 109 S H


https://doi.org/10.12677/pm.2026.161013

KA, R
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A:(prjg; qu,,) (lf(ax)x))Jo LB det(4) =0, KNS g7 (a(x)(1-a(x))~b(x)c(x)) =0
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ff %, Wik, A a(x)=1+p’a(x), b(x)=p’b(x), c(x)=p’c(x), Htr(d)=1+¢""", w5
d(x)=¢""" - p’a(x). FHRYEdet(4)=¢""", RN
0 pax) s palx)a" e (x) P ()e(x) =g
p*la(x)(g" =1)= p* (@ (x)+b(x)e(x)) | =0 (mod pq*) » WHFLE @' (x) € Z , . [x] 273
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0 ¢
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