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摘  要 

基于Tsai和Wang的线性插值流方法，重点推导双曲空间中凸曲线的逆曲率流下曲线长度和面积的演化

方程，引入等周亏格并证明其单调性以刻画流的演化规律；通过构造与内球中心相关的支撑函数，建立

曲率的边界估计，最终证明逆曲率流的长时存在性与收敛性。 
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Abstract 
Based on the research method of Tsai and Wang, a linear interpolation flow model is constructed. 
We focus on deriving the evolution equations of curve length and area under the inverse curvature 
flow of convex curves in hyperbolic space, introduce the isoperimetric deficit and prove its mono-
tonicity to characterize the evolution law of the flow. By constructing a support function related to 
the center of the inner sphere, the boundary estimate of curvature is established, and finally the long-
time existence and convergence of the inverse curvature flow is proved. 
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1. 引言 

1.1. 研究背景与动机 

曲率流作为几何分析领域的核心研究方向之一，其核心思想是通过曲线或曲面的曲率驱动几何形体

演化，最终收敛到具有良好对称性的几何结构(如圆、球面等)。在欧氏空间中，逆曲率流因具有保持凸性、

改变几何形态的优良性质，已被广泛应用于等周不等式证明、正则化等问题，详见[1]-[7]。然而，双曲空

间作为具有负常曲率的典型非欧空间，其几何结构(如距离公式、曲率定义、等周不等式形式)与欧氏空间

存在本质差异，这使得双曲空间中逆曲率流的研究面临独特挑战：一方面，双曲空间的负曲率特性导致

几何量演化方程中出现额外的非线性项，增加了分析难度；另一方面，现有欧氏空间中的曲率流方法(如
支撑函数技巧、等周亏格单调性分析)无法直接迁移，需针对双曲空间的几何特性进行改进。 

线性插值流作为一类融合了保面积流与保长度流优势的非局部曲率流，由 Tsai 和 Wang 首次提出并

应用于欧氏空间凸曲线的演化研究。该流的核心优势在于通过参数 [ ]0,1α ∈ 的调节，可灵活平衡长度与

面积的演化趋势，进而实现对几何形状的控制。然而，目前关于线性插值流的研究主要集中在欧氏空间，

双曲空间中该类流的基本性质(如长时存在性、收敛性)尚未得到系统探讨。此外，双曲空间中凸曲线的等

周不等式与欧氏空间存在显著差异，这为等周亏格的单调性分析带来了新的问题。基于上述研究空白，

本文旨在将线性插值流的研究推广到双曲空间，通过构建适配双曲几何的支撑函数与辅助工具，揭示该

类流的演化规律，为双曲空间中曲率流的研究提供新的思路与方法。 

1.2. 与现有研究的关系 

现有关于双曲空间曲率流的研究主要集中于两类：一类是保 Quermassintegral 的曲率流(如 Andrews
与 Wei [8]研究的保高阶几何量的曲率流)，其核心是通过调节流的速度函数保持特定几何量不变，进而证

明收敛性；另一类是逆曲率流(如 Kwong 等[9]研究的二维空间形式中的逆曲率流)，重点关注曲率的边界

估计与流的存在性。与上述研究相比，本文的线性插值流具有以下特点： 
1) 速度函数采用线性插值形式，同时融合了保面积与保长度流的特性，可通过参数 [ ]0,1α ∈ 连续切

换两种特殊情形，具有更强的灵活性； 
2) 引入的等周亏格定义适配双曲空间的等周不等式，其单调性直接反映了曲线向测地圆收敛的趋势，

为收敛性证明提供了关键工具； 
3) 支撑函数的构造基于内球中心，充分利用了双曲空间的径向结构，有效简化了曲率估计的难度。 
本文的研究成果既是对欧氏空间线性插值流研究的推广，也是对双曲空间曲率流理论的补充，为后

续研究更一般的非局部曲率流奠定了基础。 

1.3. 问题引入 

设常数 0α > ， 1 2
0 :X S H→ 是光滑凸闭曲线 ( )1 2

0 0X S Hγ = ⊂ 的嵌入。 
研究如下类型的闭凸曲线的逆曲率流： 

( ) ( ) ( )( ) ( )

( ) ( )0

, , ,

,0

X x t t k x t x t
t

X X

αφ ν−∂ = −∂
 ⋅ = ⋅

                        (1) 
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其中 k 是曲线 ( )1 2,t X S t Hγ = ⊂ 的曲率，ν 是 tγ 的单位外法向量， ( )tφ 是选定的非局部项，使得相应的

面积或长度演化保持稳定。特别地，当 ( )tφ 满足特定条件时，流(1)保持曲线所围区域的面积 ( )A t 或长度

( )L t 。更精确地说，如果 

( ) ( ) ( )1 ,
t

t k x t ds
L t

α
γ

φ −= ∫  

流(1)保持 tγ 围成区域 tΩ 的面积 ( )A t 。如果 

( ) ( )11 ,
2 t

t k x t dsα
γ

φ
π

−= ∫  

流(1)保持 tγ 的长度 ( )L t  
在此，借助 Tsai 和 Wang 在文[10]中的方法研究这类线性插值流： 

( ) ( ) ( )1 1, ,
2

X x t k ds k ds k x t
t L t

α α αλ λ ν
π

− − − ∂ −
= + −  ∂  

∫ ∫                     (2) 

其中 0 1, 0λ α≤ ≤ > 。为了简化记号，参考文献[11]设 

( )
1 1

2
k ds k ds k

L t
α α αλ λϕ

π
− − −−

= + −∫ ∫  

则线性插值流可表示为： 

( ) ( )
,

( , ) ,
X x t

x t x t
t

ϕ ν
∂

=
∂

                                (3) 

定理 1.1 沿着流(3)，曲线的长度 L 单调递减，面积 A 单调递增，等周亏格 ( )t∆ 单调递减 
证明 用 L 和 A 分别表示闭曲线 X 的长度和围成的代数面积： 

, ,
X X

L ds A X dsν= = −∫ ∫  

( ) ( ), , ,
X X

dL dAt W k ds t W ds
dt dt

ν ν= − = −∫ ∫  

其中 ,⋅ ⋅ 表示内积， tW X= ∂ 为 X 的速度向量。则 ( )L t 和 ( )A t 的演化方程： 

,dL dAkds ds
dt dt

ϕ ϕ= − = −∫ ∫ 

                               (4) 

进一步推导得： 

( )
( )

( )

1 1

1

2 1

21

dL k ds k ds k ds
dt L t

k ds k ds
L

α α α

α α

π λ
λ

πλ

− − −

− −

−
= − − +

 = − − 
 

∫ ∫ ∫

∫ ∫



 

( )1

1

1
2

2

dA L k ds k ds k ds
dt

Lk ds k ds

α α α

α α

λ λ
π

λ
π

− − −

− −

= − − − +

 = − 
 

∫ ∫ ∫

∫ ∫
 

利用 Hölder 不等式可得 0, 0dL dA
dt dt

≤ ≥  
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等周亏格：等周亏格的本质是衡量曲线偏离“等周不等式最优解”的程度。 
参考文献[12]，定义等周亏格： 

( ) ( ) ( ) ( )2 24t L t A t A tπ∆ = − −  

结合 ( )L t 和 ( )A t 的单调性可知， ( )t∆ 单调递减。 

2. 几何量的演化方程 

引理 2.1 曲线各个几何量的演化方程如下： 

(1) ( )( )ds k t k ds
t

αφ −∂
= −

∂
 

(2) ( )t s k Tαν −∂ = ∂  

(3) ( ) ( )( )2 2 1s
k k k t k
t

α αφ− −∂
= ∂ + − −

∂
 

证明 
(1) 

, ,X X Xds dx
x x x

ϑ ϑ ∂ ∂ ∂
= = =

∂ ∂ ∂
 

21 ,X X
t t x x
ϑ

ϑ
∂ ∂ ∂

=
∂ ∂ ∂ ∂

 

( )( )X t k
t

αφ ν−∂
= −

∂
 

( ) ( )( )
2

( )X t k t k
t x x x

α α νφ ν φ− −∂ ∂ ∂
= − + −

∂ ∂ ∂ ∂
 

由于 ( )tφ 是全局时间函数，
( )

0
t

x
φ∂

=
∂

，且
1

s
k T

x
ν ν

ϑ ϑ
∂

= ∂ =
∂

 

( )( ) ( )( )
2

2,X X kt k k t k
t x x

α αφ ϑ ϑ φ
ϑ

− −∂ ∂
= − ⋅ ⋅ = −

∂ ∂ ∂
 

( )( ) ( )( )1 k kt k t k
t

α αϑ ϑ φ φ
ϑ ϑ ϑ

− −∂
= ⋅ − ⋅ = −

∂
 

( )( )ds dx k t k ds
t t

αϑ φ −∂ ∂
= = −

∂ ∂
 

(2) 

, 0, , , 0t tT T Tν ν ν= ∂ + ∂ =  

( )( ) ( )( )
( )( ) ( )( )

t

s

s

X XT
t s s T

t k t k
s

t k k t k T

α α

α α

φ ν φ ν

φ ν φ

− −

− −

∂ ∂ ∂ ∂   ∂ = =   ∂ ∂ ∂ ∂   
∂

= − + − ∂
∂

= ∂ − + −

 

代入正交条件： 
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( )( ) ( )( ), , 0t sT t k k t k Tα αν ν φ ν φ− −∂ + ∂ − + − =  

( )( ), 0t sT t k αν φ −∂ + ∂ − =  

( )( ),t sT t k αν φ −∂ = −∂ −  

由 tν∂ 垂直于ν ，得 tν∂ 沿T 方向 

( )tφ 是不依赖空间坐标的全局时间函数，即 ( ) 0s tφ∂ =  

( )( ) ( ) 1,t t s s sT T t k T k T k k Tα α αν ν φ α− − − −∂ = ∂ = −∂ − = ∂ = − ∂ ⋅  

(3) 根据曲率定义： 

sT kν∂ = −  

t s t
kT k
t
ν ν∂

∂ ∂ = − − ∂
∂

 

( )( ) ( )( )s t s sT t k k t k Tα αφ ν φ− − ∂ ∂ = ∂ ∂ − + −   

展开得： 

( )( ) ( )( ) ( )( ) ( )( )2
s s s s st k t k k t k T k t k Tα α α αφ ν φ ν φ φ− − − − ∂ − + ∂ − ∂ + ∂ − + − ∂   

代入 s kTν∂ = 和 sT kν∂ = −  

( )( ) ( )( ) ( )( ) ( )( )2 2
s s st k k t k T k t k T k t kα α α αφ ν φ φ φ ν− − − − ∂ − + ∂ − + ∂ − − −   

比较左右两边ν 和T 的分量： 
ν 的分量： 

( )( ) ( )( )2 2
s

kt k k t k
t

α αφ φ− − ∂
∂ − − − = −

∂
                          (5) 

T 的分量： 

( )( ) ( )( )s s sk t k k t k k k Tα α αφ φ− − − ∂ − + ∂ − = − ⋅∂   

s t t s
k kT k k k T
t t

αν ν ν −∂ ∂
∂ ∂ = − − ∂ = − − ∂

∂ ∂
 

( )tφ 不依赖于 s， ( )2 0s tφ∂ =  

( ) ( )( )2 2 1s
k k k t k
t

α αφ− −∂
= ∂ + − −

∂
 

3. 支撑函数 

支撑函数：支撑函数是刻画凸曲线几何形态的重要工具，其核心思想是通过曲线到固定点的距离在

法向量方向的投影描述曲线的位置与形状。在双曲空间中，由于距离公式的非线性，支撑函数的构造需

结合径向结构，本文选择内球中心作为固定点，使得支撑函数充分利用曲线的凸性，简化演化方程的推

导。 
引理 3.1 设 0p 是

0t
γ 内球 ( )0 0,B p ρ 的中心，定义支撑函数： 

( ) ( )
0

, sinh ,p ru x t r x ν= ∂  
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其中 ( )
0pr x 是从点 x 到固定点 0p 的距离，其中 { }0 0, ,min ,tx t t T tγ τ ∈ ∈ + ，满足： ( )1 2,c u x t c≤ ≤  

( ) ( )0
22 : sinh , sinh 2

2
C u x t C

ρ = ≤ ≤ 
 

 

则支撑函数的演化方程 

( ) ( ) ( )( )0

1 2cosh 1ss pu k u r x t k k u
t

α α αα φ α α− − − − −∂
= − + − − −

∂
 

证明 

( )( ) ( )
0 0

sinh , sinh ,t p r p r tu r x r x
t

ν ν∂
= ∂ ∂ + ∂ ∂

∂
 

1) 时间导数展开 

( )0 0
sinh , sinh ,p pu r r r r

t t t
ν ν∂ ∂ ∂

= ∂ + ∂
∂ ∂ ∂

                         (6) 

第一项： ( )
0

sinh pr x
t
∂
∂

 

( )
( )( )0 , ,p

r r

r x x t k
t t

αφ ν−
∂ ∂

= ∂ = − ∂
∂ ∂

 

( ) ( ) ( )( ) ( )( )0 0 0
0

sinh cosh , cosh
sinhp p r p

p

ur x r x t k r t k
t r

α αφ ν φ− −∂
= ⋅ − ∂ = − ⋅

∂
 

第二项： ,rt
ν∂

∂
∂

 

rν∇ ∂ 为径向联结在法向量方向的分量， r∂ 是径向向量 

, 0rν ν∇ ∂ =  

( )( )
( )( )

( )( )
0

, , ,

,

,

sinh

x x
r r rt t

r

r

s

p

t
t k

kT t k

u
t k

k r

α
ν

α

α
α

ν ν ν

ν φ

φ

φ

∂ ∂
∂ ∂

−

−

−

∂
∂ = ∇ ∂ + ∂ ∇

∂

= ∂ ∇ ⋅ −

= ∂ ⋅ −

= − ⋅

 

将两项合并： 

( ) ( )( ) ( ) ( )( )0 0
cosh , sinh ,p r p r

u r x t k r x k T t k
t

α αν φ φ− −∂
= ∂ − + ⋅ ∂ −

∂
 

2) 支撑函数的空间导数 

( )0

0 0

0 0

0

sinh ,

cosh , , sinh ,

cosh , , sinh ,

sinh ,

s p r

p r r p r s

p r r p r

p r

u r
s
r T r

r T r k T

k r T

ν

ν ν

ν

∂
= ∂
∂

= ⋅ ∂ ∂ + ∂ ∂

= ⋅ ∂ ∂ + ⋅ ∂

= ⋅ ∂
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3) 支撑函数的二阶空间导数 

( )

0 0

0 0

2

cosh , , sinh ,

cosh sinh ,

ss s

p r r p r

p s p r

u u
s

r T r k T
s

k r k u k r T

ν

∂
=
∂

∂  = ∂ ∂ + ⋅ ∂ ∂
= − + ∂

 

联立得： 

( )( ) ( )( )

( )( ) ( )( )

0 0
0 0

0

cosh sinh
sinh sinh

1coth

s
p p

p p

p s

uu ur t k r t k
t r k r

r t k u t k u
k

α α
α

α α
α

φ φ

φ φ

− −

− −

∂
= ⋅ − ⋅ + ⋅ − ⋅

∂

= − + −

 

利用 ssu 的表达式消去 su  

( ) ( ) ( )( )0

1 2cosh 1ss p
u k u r x t k k u
t

α α αα φ α α− − − − −∂
= − + − − −

∂
 

4. 流的存在性 

命题 4.1 设 tγ 是流 ( )( )t X t k Nαφ −∂ = − 的光滑凸解，则存在仅依赖于初始曲线 0γ 和参数α 的正整数

0k ，使得对所有 [ )0,t∈ ∞ 成立： 

0max k k≤  

证明 构造辅助函数 ( ) ( )
,

,
kW x t

u x t c
=

−
，其中 sinh

2
c ρ =  

 
为常数。 

由于 2u c≥ ，分母恒正，W 定义良好 

( ) ( )2sinh 2k W u c W c= ⋅ − ≤ ⋅  

目标通过 W 的上界控制 k 的上界 
曲率的演化方程： 

( ) ( )( )2 2 1s
k k k t k
t

α αφ− −∂
= ∂ + − −

∂
                             (7) 

支撑函数的演化方程： 

( ) ( )( )0

1 2cosh 1ss p
u k u r t k k u
t

α α αα φ α α− − − − −∂
= − + − − −

∂
                    (8) 

将 tk 和 tu 的表达式(7)和(8)代入
( )
( )2

t tk u c kuW
t u c

− −∂
=

∂ −
得： 

( ) ( )( ) ( ) ( )( )
( )

0

2 1 2
2

2

1 cosh 11 ss p
s

k t k k u r t k k uW k
t u c u c u c

α α α α
α

φ α φ α α− − − − − −
−

− − − − − +∂
= ∂ + +

∂ − − −
 

假设 W 在 ( )0 0,x t 处取得最大值，则在此点处 0sW = 且 0ssW ≤ 。 

由一阶导数条件
( )
( )2 0s s

s

k u c ku
W

u c

− −
= =

−
得 s

s
ku

k
u c

=
−
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由二阶导数条件 0ssW ≤ 得 ( ) 2 0ss s s ssk u c k u ku− − + ≤  
将一阶条件代入二阶条件得： 

( )2 2

2, sss ss s
ss ss

k u c kk ku k
k u

k u c k k
−

≤ − ≤ −
−

 

( ) ( )

( )

2 1 1 2 2

2
1 2 2 2 2

1

1

s s ss s

s ss
s ss s

k k k k k k k
s

k ku
k k k k u k k

k u c

α α α α

α α α α

α α α α

α α α α α

− − − − − − −

− − − − − − −

∂
∂ = − = − + +

∂
 

≤ − − + + = + 
− 

 

由于 ( )2sinh 2u C≤ 和 ( )
0 2cosh cosh 2pr C≤  

( ) ( )( ) ( ) ( )( )
( )

( ) ( )

0

2 1 22 2

2

2
21 2

1 2

1 cosh 1

cosh 21

ss pss s

ss

k t k k u r t k k uk u k kW
t u c u c u c

Ckk Wu t c W c W
u c u c

α α α αα α

α

φ α φ α αα α

α φ

− − − − − −− − −

− −

− − − − − ++∂
≤ + +

∂ − − −

 −
≤ + − + + 

− − 

 

其中 1C 和 2C 为正的常数 

( )tφ 的非局部估计 
(1) 保面积 

( ) ( ) ( ) ( ) ( )2
1 1 sinh 2 , max

t t t
t k ds u c Wds c W W W

L t L t
α

γ γ γ
φ −= ≤ − ⋅ ≤ ⋅ =∫ ∫                (9) 

(2) 保长度 

( ) ( ) ( )1
2

1 1 sinh 2
2 2t t

t k ds u c Wkds C Wα
γ γ

φ
π π

−= ≤ − ⋅ ≤ ⋅∫ ∫                   (10) 

统一记为： ( ) ( )3 3 2, sinh 2t C W C Cφ ≤ =  
将 ( )k W u c Wc= − ≥ 代入 ( ) 3t C Wφ ≤   

( ) ( ) ( )2
1 2 2

3 1 2

1 cosh 2Wc CdW Wc W C W C W C W
dt c c

αα − −  −
 ≤ + − + +
 
 



                 (11) 

当W 足够大时，主导项为 2 2
1 3C W C W α +−  ，存在阈值 0W  

使得当 0W W> 时， 2
4 0dW C W

dt
α +≤ − <



 ，其中 4 0C >  

结合初始条件 ( ) 00
K

W
c

= 有限，由比较定理知 ( )W t 有界 

即 { }0( ) max (0),W t W W≤   

( ) ( ) 0
0 02 2 0sinh 2 , sinh 2 max ,

k
k W C k k C W

c
 ≤ ⋅ ≤ = ⋅  
 

  

命题 4.2 初值为 ( )0k θ 的方程(7)的解 ( ),k tθ 长时存在，如果 ( )0 0k θ > ，则 ( ), 0k tθ >  
证明 假设存在最小曲率点 ( )0 0, mink x t k= ，则 0tk ≥  
结合演化方程： 

( )( )2 2 1t sk k k kα αφ− −= ∂ + − −  
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在最小值点， 
2 0s k α−∂ ≥ 且 k αφ −≥  

( )( )2 1 0tk k k αφ −≥ − − ≥  

{ }0min ,1 0k k≥ > ，即 k 保持凸性 
借助文[12]中的方法，双曲空间内星形曲线的单位外法向量ν 与曲率 k 可由径向函数 ( ), tρ θ 表示为： 

( ) ( )22 2

1
sinh1 sinh

r
θ

θ

θ

ρ
ν

ρρ ρ

 
= ∂ − ∂  +  

                         (12) 

其中 r∂ 为径向单位向量， θ∂ 为辐角方向的单位向量。 
曲率的表达式可通过双曲空间的第二基本形式推导得： 

( ) ( ) ( ) ( )

( )( )

2 2

3
2 2 2

sinh cosh 2 cosh sinh

sinh

θ θθ

θ

ρ ρ ρ ρ ρ ρ
κ

ρ ρ

+ −
=

+
                     (13) 

将法向量表达式与曲率表达式代入 k α− 型流方程，消去ν 与 k ，结合双曲空间内弧长元的计算公式： 

( )2 2sinhds dθρ ρ θ= +  

将流的方程转化为径向函数 ( ), tρ θ 的标量抛物方程： 

( )( ) ( )
( ) ( )

2

2

0

1
sinh

,0

t k
t

α θρρ φ
ρ

ρ θ ρ θ

−
∂
 = − + ∂


=

 

其中 ( )tφ 为全局调项 
结合曲率上下界： ( )0 0,k k t k≤ ⋅ ≤ ，方程为一致抛物型，通过 Schauder 理论，由曲率 k 的 2C 估计可

推导 2,C α 估计，从而得到C∞ 估计，由曲率及其导数一致有界，得解在所有 [ )0,t∈ ∞ 上光滑存在。 
定理 4.1 (长时存在性)：设 0γ 是双曲空间 2Η 上的光滑闭凸曲线，对于任何 0α > ，保面积/长度的流

有光滑凸解 tγ 定义在所有时间 [ )0,t∈ ∞ ，而且 tγ 的曲率估计 k 

( )0 0,k k t k≤ ⋅ ≤  

对所有 [ )0,t∈ ∞ 成立 
证明 假设 k α− 型流(1)的最大存在时间T < +∞，即解 tγ 仅在 [ )0,t∈ ∞ 上存在。 
当 t T −→ 时，由抛物正则性理论 
若解在 t T= 处奇异，则某一几何量趋于极端值 
但：1) 曲率 k 始终被 ,k k 控制，不会趋于无穷或零；2) 内半径 1 0cρ− ≥ > ，不会趋于零；3) 径向函

数的导数 ,θ θθρ ρ 一致有界，不会趋于无穷。 
矛盾，故假设不成立，流的最大存在时间T = +∞，即解 tγ 对所有 [ )0,t T∈ 存在。 

5. 流的收敛性 

指数收敛需证明 t → +∞时， tγ 在C∞ 拓扑下以指数速率逼近测地圆，分“子列收敛”与“全体序列

指数收敛”两步。 
子列收敛到测地圆：利用等周亏格的单调性与等距变换的紧致性 
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引理 5.1 存在时间序列 jt → +∞与等距变换 2 2:
jtϕ Η →Η ，使得 ( )j jt tϕ γ 在C∞ 拓扑下收敛到与 0γ 等

面积/等长度的测地圆。 
证明  
1) 等周亏格的极限： 
等周亏格 ( ) ( ) ( ) ( )2 24t L t A t A tπ∆ = − − 单调递减有下界，故 ( ) 0t ∞∆ → ∆ ≥ 。 

若 0∞∆ > ，因
0

d dt
dt

+∞ ∆
< +∞∫ ，故

( )
0

d t
dt
∆

→ 。 

2) 曲率趋于常数： 

保面积流： 2 0d dLL
dt dt
∆
= → ，得 0dL

dt
→  

由长度变化率公式及广义 Hölder 不等式等号成立条件，得 ( ),k x t k∞→ ，其中 k∞ 为常数 

保长度流： ( )4 2 0d dAA
dt dt

π∆
= − + → ，得 0dA

dt
→ ，同理得 ( ),k x t k∞→  

3) 高阶导数一致有界： 
由 Schauder 正则性理论，对于抛物方程 ( ) ( ) ( ), , ,t k a t k b t k c tθθθ θ θ∂ = ∂ + + ，其中 ( ) ( ),a t F t k αθ −=

有界且非 0( ( )F t 有界， k 有界且非 0)， ( ),b tθ 和 ( ),c tθ 有界，故 k 的各阶导数一致有界。同理，支撑函

数 u 及曲线 γ 的各阶导数均一致有界。 
4) 等距变换与紧致性： 
取内球中心 ( )0 jp t ，定义

jtϕ 将 ( )0 jp t 映射到固定点 p∗  
由 Arzela-Ascoli 定理， ( )j jt tϕ γ 收敛于光滑闭凸曲线 γ∞，且 ( )k kγ∞ ∞=   
双曲平面内常数曲率闭凸曲线必为测地圆，故 γ∞为测地圆。 
5) 保面积/长度： 
若等距变换保持面积，则 γ∞的面积 ( ) 0A Aγ∞ =  
若等距变换保持长度，则 γ∞的长度 ( ) 0L Lγ∞ =  
全体序列的指数收敛：通过线性化扰动方程的特征值分析，证明全体序列指数收敛。 
证明 
步骤 1：扰动分解 
设 γ∞的半径为 ρ∞ ，则保面积流 ( )0 2 cosh 1A π ρ∞= − ，保长度流 0 2 sinhL π ρ∞=  
对充分大 t，径向函数 ρ 可分解为： 

( ) ( ), ,t tρ θ ρ η θ∞= +  

其中 ( ), tη θ 为小扰动， ( ) ( )0kCt tη → → +∞  
步骤 2：线性化演化方程 
将径向函数 ρ 代入标量抛物型方程，忽略高阶小项，在 ρ ρ∞= 处进行线性化 
由 cothk ρ∞ ∞= ，计算 k 的线性化导数： 

( ) ( )2
0 sinh

d k
d θθ

ε

ρ
ρ εη η η

ε ρ
∞

∞
= ∞

+ = − +                           (14) 

进而 k α− 的线性化导数为： 

( )
1

2
0 sinh

kd k
d

α
α

θθ
ε

α ρ
η η

ε ρ

− −
− ∞ ∞

= ∞

= +                              (15) 
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全局项 ( )tφ 的线性化： 

2
0 2 sinh

kd d
d

α

ε

α ρ
φ η θ

ε π ρ

−
∞ ∞

= ∞

= − ∫                             (16) 

将(15)和(16)代入标量抛物型方程，得η的线性化方程： 

1
2

dθθη λ η η η θ
π

 = + − 
 ∫                               (17) 

其中
1

2

coth 0
sinh

αα ρ
λ

ρ

− −
∞

∞

= >  

步骤 3：傅里叶系数衰减 

将η展开为傅里叶级数 ( ) ( ), in
n

n
t a t e θη θ

+∞

=−∞

= ∑ ，代入线性化方程(17)： 

( ) ( )2
t n na t n a tλ∂ = − ，解得 ( ) ( ) 2

0 n t
n na t a e λ−= ，因此： 

( ) ( ) 2

2 0, 0 n t t
nL

n
t a e M eλ λη

+∞
− −

=−∞

⋅ ≤ ≤∑  

其中 ( )0 0n
n

M a
+∞

=−∞

= ∑  

由初始曲线的光滑性，傅里叶系数衰减，故 0M < +∞  
步骤 4： kC 指数收敛 
由抛物方程的正则性估计，对于线性抛物方程 t θθη λ η∂ = − ∂ ，有： 

( ) ( ) ( )( )2 2, , ,k kk tC L C
t C t tη η η −⋅ ≤ ⋅ + ∂ ⋅  

( ), k
t

kC
t C e λη −⋅ ≤  

即 ( ),tγ ⋅ 在C∞ 拓扑下指数收敛到测地圆 γ∞。 
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