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Abstract

The 2-tubular generalized fullerene graph is a tubular generalized fullerene graph formed by con-
necting a cap composed of two digons and two pentagons at each end to a tube body composed purely
of hexagons. The di-forcing polynomial of the graph is a two-variable polynomial regarding the forc-
ing numbers and anti-forcing numbers of all perfect matchings of the graph. By classifying and count-
ing the matching situations of the edges incident to a given vertex, we derived the linear recurrence
formula, general term formula, and generating function for the di-forcing polynomials of 2-tubular
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generalized fullerene graphs.
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1. 51§

B 00 38 22 T2 e i — AN X OB L 7 ], P 56 36 DL BCE A WAL 25 T R LR B 4504
1985 4, Randic Al Klein [1]7ERF S AL T 05 28— IR $EH T OUE IS A B RS . 1991 4F,
Harary S5[2]8F 7E 5 R GiRT, K HE R & N BB e £ VLRC A 3R0a 4. 2007 4, Vukigevié A1 Trinajsti¢
[3]42 H SOmIE A IS, Adams ZE[415EH T B SRAE S OSBRI BT 52 95 UG IE Fr) 5 Z00) A 1 4

Fo 2016 4, FEULI[SIFEH T KR R BRIE TS FIRER . Dy 1 SEAF T+ AT 0 AT 56 26 DL TG A it 5 A 2 i
8%, FRANT[6]48 AT Hwang S5[7] 73 A3 B 1 938 2 T x UM S 58 2 O ME & o el i), S — 2B 3K

5 22 WA B il 22 TR TS5 2 7 AP S58[8]-[12]. 2022 48, XN #E, DML, #kifFoss(13]
feth 1B BRE 2 WA, IR BB M L RIR TSR g SR VL RS A smaa £, S smia BN X5 18 %
Tie 2023 4F, ShESE[141EEIHRHE T B4 € TR RO A VL HC I DUE 1) 1 0588 2 I s HE 2
A A R BR . 2024 48, T2 [ 151852 UM pr -SRI T35, g T IRMAERR BT X8 2 151
AR HESC R AN R 2 A S IR 1 3 22 IR e 5it e 22 T i T IS 1 K R, HR T
X5 38 22 IR RIT 0 SR D o AR S B e o 4 7 T R I AR DL 56 L ) 20 280 e Ak 4, 48
T 28R SR B I T, XA 2 3 a2 OATE T4 1K

2. M&EHEIA

B GRIE—MERFH =TT (V (G),.E(G).wg), HHV(G) M E(G) HREE G T i A4,
o RRKRIKREL. G )58 SRILIC A 18 P P TE 2 i sl HLOGIE G o B TR B AR & o X 58S IR M
FHTHE S NEAETESAMAE M TESRITE S, AR S 9 M HIskiasE. M R/NRIBSERTRNRA M 58
B, DR f(GM) . HEGIHMBRIA%E S 5, BEIEME—ME ERICAC M . TFR S/ M IR SRIEAE
M IR/ S BRIE AR AN A MO SRIAH 18 of (G.M ) o BEsh, 45 G b T S8 3R ILTC I i/
TR BRI HIFRN G iR N3 f (G) AR SR F (G) o AHRIHL, K& G T 5 SR UL AL o
I e MEA R 7 BIFR A G BN RIS af (G ) MR R RRIAEL Af (G) -

Bl G 1) M-S TR AR BT R A B B0 A B SR T 52 SR UL HE MO RIILANSR . 25— 21 M -SSR DT AS
MHAZ AN M 32, WIRREATAMA . B G SRS M AR Pl B0 43 i
fEc(GM)FI(GM) .

SI 1 [4] [16]¥ M NE G —A5EEILA, WS <M =& M IRiags B S 6% G e M -
i E s SIS U

B3 2 (5] WM NEGH— A5k, WS cE(G)\M 2 M fR#EIaES HY s 058 G M
BA M SR 2D — S AL AL
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FIB3[17] % M NE G HE—ERILE, W f(G,M)2c(M)
f(GM)=c(M).

FIE 4[5] M A G KAE—58KILAS, W af (GM)>c' (M)
af (G,M)=c' (M) .

EX 1[6] B G H5mia 2y

o FERI, G AR,

o FERI, K G RTII AR,

F(G)
F(G,x)z z x/(OM) — Z W(G,i)xi,

MeM(G) i=f(G)
ot w(G,i) 3 G MBRIAECA i 101563 IR 15
X 2(7) G 13 %

) 47(G) :
Af(G,x)z z ¥ (OM) Z ,u(G,i)x’,
MeM(G) i=af(G)

Sooi 1(G.1) B G IR BLANON | 952 LR L.
EX 3[13] B G rREiE 2 maCh
Faf (Gix,y)= Y, xf(G’M)y”f(G’M) =>v(Gii, j)x'y,

MeM(G) ij
Hrv(Gii, j) Fom G s 8o i, ROEEECN j 158 R AN 4.
w1tk

{F(G,x):Faf(G;x,l),
Af(G,x):Faf(G;l,x).

3. 2-BRT X E#EERNTHE ST

2-FEIR T L WA P A S £ A P AL TR (YT 25 ) AN A T3 T A8 R i 5 AN 48 N TA T
J R S W BT R IR SCE IR, RN T, e n AREBAGRE S 10 4- R NG BRRIEEDIRTT X
BRI E R EE R TP KK L, mE 1, HWGA BB, AERIE KRS N
sy eeysbyyby, by s (U & = 204 2 ) BB G 0, b W T D e ey 5 a, b WIS T iD
e,e, Ux&7j($1\_alal+l,bb

ll+1( =12, k- 1)’ RN ay, 21+1’a21+1b21( =ln )° NITAEREIL, BRoK-Tid
AN RID SRR A B I .

XXX K.

k~2 bk 1 b

Figure 1. 2-Tubular generalized fullerene diagram

B 1. 2- 8RR X EEHE
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fE—i. WK 2 Frr.
FERHL, n=2WF, PR PANE R SRR . W 3 B,

a a as ay
bl bg b3 b4
Figure 2. lllustration of T,
2. 7, fER
a a» as ay ds g
bl bg b3 b4 bs b 6

Figure 3. [llustration of 7,
E 3. 7, HER

SIS WM R 2-ERT LEWEE T, — A28 — 0 B E LA 56 R ILE, WAAE A RK
AR M AR, B8 n A~ M 3358 4-B.
EBR Gl 1w RL, T, SESRILECSS A

#aa,, (i=13k-1)eM , WLHKH b, (i=13,k-1)eM . B M &4 H/KTVICE I ST,
X b 7E S DL E— 1, 8 M .

i € 19 e,eM , oA #E Lo oo X, aiamybibm(i:1,3,"',k—1)eM , il
TN RIS (i:1’3,"',k—1)€M K P M- & B 4 B oa,a,b.b,a,, B

@by @b (=13, k—1)eM , TR E M -H 4-W a,b,,,b,a,,a,, « BIIXFh5E 3% VLA Bk 1
a={e.e}, c,={eye,} fb, FGE LI 4-F T 4-H
B 7, s Ml a0, Bk Mo oh, HARSESRUCHCA n ANSCH 4- B eI Mar g, Ss 3oL,
Sl 6 WM R 2-ERT LE WA T, 208 X E LA 72 RILE, WM 5Riadc
f(T,-M)=n+2.

ﬁEHE %EIEM’ tﬂ4ﬁﬁi—\"

a &% di> ai, a; ais1 iy Qi3 o A
(X XX Ko +)-
bl o b,'.'_v b,'.] b,' b;wl bi+2 bi+3 o b"'

Figure 4. T, , aperfect matching with at least one pair of vertically aligned matching edges
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W aa,,bb, e M, HIT,, KT e Bie, eM, AYike, eM .

AT, hEE2ANMRKRERN 2B, ¢ ={e.e}.c,={ene,}, BIGIFSATHENST,, B0 MZM
A AR T, RANSE M AR 4, WA= n+2. BT T, AR K, RYE51H 3 4 M 1
HHL £ (T, M) 2 n+2 o SLEY M P R IUEE T, , PR ) IR B () n A 4R, dis]
1M n+2 5 5 L — SR DG e M —sia gk S I f (T, M) <|S|=n+2, #51 HAHE.

FIE 7 WM R 2-ERT E IR T, , 208 — xR EVLRL M 7E RIS, W M K Rssia %0

af(TQ,n,M)=n+3.

W Atk e eM , WE 5 P,

a (5] (3 1y s —_— ('S (] ay
b b> b; by bs v bi.2 bia b

Figure 5. T,,, a perfect matching with at least one pair of vertically aligned matching edges

5. T, EOa—EERRINELLE

A 6 WAL T, ST TUS AL S 7E n 2 AT M RSB, K P s BT A LA
(I A 52 0N 24, AR S 2-TE 0 T8, % T B ET (75 I/ 493 2 LR M, o B R
LR, BT R AL A FATICRGAI K 4(n+1) B9 M SCHTE & o B ¢ 15 T, BARA M A
BRI T, , (0 BOCHIZE M SR 4, B A =n+3. BT T, RR 0, HRARSIE 4 6 M 10
R af (T, M) = n+3 . Fr 515 2 BARICRC aa, 55 n+ 2 MBI & L 4 ARDTRLIA AT LR M
— AR S W af (T, M) <|S|=n+3 . 45 b3 EAE

RO, A 2 AR R RN T, R S TR R R, T, WA S AT M
AU 7, SR 2 T T MO R, R £ Bk 6 T 24 n (MBI A R, DA 52 5 IUREA
HOETF MO0 BOETA R e HHNAT M S2hs 4TI 3L

X4 VM 2R B R T, B — A eI,

b (1)) (L] ay [ g 7 6
bl b‘z b3 b4 bs bg b’] bs
lﬂ*}ﬂ MM TR B M- -4 R lﬁ]ﬂ [k M BT 7K M-3E -4 B

a ay as ] a a: a3 L4 as
b 1 b4 bs bs bl bz b3 b.ﬁ b;r bs
Figure 6. The operation of deleting and condensing M-interleaved 4-cycles in 7, ;
B 6. T, W48 M -3258 4-BIRIIRIE
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() ayay,,,byby €M H.C=aya,,b,b,,, a, I M ST K M -22585 4-18, MR C J5 (R
B C B 4 AT, K5y S byrs by 3 by, B ARILREL S, WIT,, Ty, FAMGIKT M -
AL 41

(i) ayby.byay,, €M s B .C=ayb,,, bya,, a, BB M -SSR SE M 224 4-F, Wk C J5ED
W C 0 4 ANTRAD, 45y, 5 g s byy 5 by LRI, WIT,, Ty, 2 FCOAMATEEL M -
AL 41

W4 M 225 A-Tel)s, T, BRI EE R B B, IRIRZIBALH 2-E IR U A &l NI T,
58 SCIL IS 73 B AR KT M -2248 4-Fl, BH M 328 4-[RIB1T, ailsl 6 pios.

AR T, HI58 R ULECRAY, AT %8 M S A-FlROFRAE,  BETIAR 1 7, , AOXU5E 8 22 35T PR 3 HE
EE N An> 1, 228K SCE G IR T, XU 2 WA HESC R

Faf(TM;x,y) = 2xyFaf(T2,,H;x,y)—2x2y3 +xp°.

MR WM T, MAERSERILE, MR o KIBGL LR ST IHE, Wk 7 Bos.

[ a a3 ay s — .2 (8] (g
TR,
XXX XA
b, b, bs by bs e bi.» b by
Figure 7. The matching situation of the edges associated with vertex a, of 7,
B 7. 7, IR o B ILE SR

I 1 F 4 T UL ARSI A B 5E R ILHAC M, » 4ni 8 FToR

a [15] a3 ay s a5 %) (7S] ay
by b, bs by bs i by by by

Figure 8. The perfect matching M of the fully horizontal matching edges of 7, ,.
E 8. 7,, 2K FERHMTERE M,

S S ={aa,} & M A EANEBEE, S ={e,e | RB/NRIRIEE. FIIAF T, , BIFHE 7 X GRIE £ 5
B W

2

.

HE2 #ieeM, LH e BeeM EMNM, =D, | M £/0E8 X BEILAEA H C = a,a,b,b,a,
FIR—> M 2S5 41, HI91 3 5 ATREAE T, I — DNMRORAZE M SHEEAE ¢, HHER M 32k
5 C AL, CAHET,, 45 C e i) T B3], # C W HRAE M 2B stk 1, B C X
M H)5RIBEUE 1o 55— J7 Il 512 7 /0, 47, 4% C i, GO i RAHE M SZss AR ok 2 1, T
C, 0 M BRI DT 1. BbAh, 48 C JaANE M, L, ST, AEER 1 8928 Hon] LU 44 )
M 5T 4-TAE MR, BKIAS T, B9 X538 22 T A SC 20
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2xy(Faf(T'2.nfl;x’y)_xy2)'
1HIE3 He,eM, XS5 2 RENMT.
Bb, T, A TR
Faf (T;,,:%,9) = 2xp(Faf (T, ;%) —0° )+ 0°
= 2xyFaf(T2v,H;x,y)—2x2y3 +xp’.
IR Ha2 10, 2-ERT CE BIEE T, BREIE 2 ) — AR UGB HER R
Faf (T,,3%,y) =(14 2x00) Faf (T, 5%y ) = 2x00Faf (T, 5%, ).
BB hERE 1 Al
Faf(Tz,n;x,y) = 2xyFaf(T2’n71;x,y)—2x2y3 +xp°.
Faf(sz,H;x,y) = 2xyFaf(T2’n72;x,y)—2x2y3 +xp’.
PA_E W AR, 13
Faf (T, ,x,y) - Faf (T,,, ;% y) = 2xp(Faf (T, i x,) - Faf (T, ;x.y)).
B
Faf(];,n;x’y) = (1+2xy)Faf(T'2,nfl;x’y)_zxyFaf(T‘Z,)kZ;x’y)'
W2 Hax I, 12 2-ER E AR T, R 2 RS HER R, Sx=L y=Lx=y=1,
WS T, B2, sRE 2, 58 R ILRA B R
F(T,,.x)=2xF (T, ,,x)-2x" +x,
Af (T,,.3) = 2041 (T, 1.¥) =20 + 57,
v (1) = 2} (7)1
R T, X818 2 TR &R, SERMEHET A I, WIS .
REEE 2 2R SR B B T, XA 2 T s 1A 508
Faf(Tz’n;x,y) — 2n+2 xn+2yn+3 + xyzl
T 1T, BB RN
Faf(]},n;x,y) = 2xyFaf(T2,n71;x,y)—2x2y3 +xp%.

RfI
Faf (T,,:x.y) - xy° = 2xpFaf (T, ;x,y) - 227y
=2xy(Faf (T, ;%.0)-07).
W46 S AT
Faf (T,,:x,y)—xy* =8x"y*.
[A] it

Faf (T,,:x,y)-xp” =82 y* - (2xp)""

2 _n+2 _ n+3
=" Xy,
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Faf(Tz’n;x,y) — 2n+2 xn+2yn+3 + xyzl
W3 E, MIERE LT, 2 x=1 y=Lx=y=1, AIE2-ER " LEHHE T, HoRIES
W, B2, SESRILE KN 202k T n BB A X
Faf(Tvz,n;x’y) — 2n+2xn+2yn+3 +xy2,
F(Tz’,,;x) — 2n+2xn+2 +x,

Af(gwn’y)=2n+2yn+3 +y2’

M (1, )| =2 +1.

B3 L2110, 228K SCE BRI T, X081 2 T 0 AR R R R

2 2.3
o (L) 62"y
= F T ) =
plenz) =Rl (Ter)2 == 50

UEBA

p(x.y.2) =Y Faf (T,,:x,y)2"

n=0

- ZFaf(Tz,n;x,y)z” +Faf(Tz’0;x,y)

nxl

= Z(nyFaf(Tz,n_l;x,y)—2x2y3 +xy2)z" +Faf(T2,0;x,y)

nl1

= 2xyzZFaf(Tz’n;x,y)z" +Z:(—2x2y3 +xy2)z” +Faf(Tz’0;x,y)
nx1

n=0

:2xyZp(x’y’Z)+(—2x2y3+xy2)é+4x2y3+xy2,

(—2)62)/3 -i—xyz)-z-i—(l—z)(4x2y3 +xy2)
(1—2xyz)(1—z)
B xp? (1+4xy)—6x7y'z
(1—2xyz)(1—z)
W4 B, fUEHE 3 AT, AR T, KGRI 2 A R R, 204 y=1Lx=1, x=y=1
VU RTHE ) 2-ERT SCE WG I T, 158 2 T, aman 2 TR 58 SE G e S B A2 1l ek B0
3 x(4x+1)—6x22

ZF(Tzqn,x)z” =

>0 (1—2)(1—2xz) ’

p(x,y,z)=

2 3
.Y (4y+1)—6y z

FI(T 2\ ) P
Zé (T...0)z (1-z)(1-2y2) °

" 5-6z
2 M |2 “(1—22)(1-2)

S5k BETCERT 20K SCE A I T, BRI i 5 S s ia i R IT e A, IR I v LA R O
P, A& SR DR AT U A0 AR 7

T2,n
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1) VLEC IS -

T, IR 5 RILEL 7 NP, — R A A ME—I5ERILHC M, HoAth 58 SRILRC#AR & 240 (52X
VL EE I A AT DA 5 A B R A K IL RS D), R AE T, , I E AR, PrELEATH 558
SERAGITE SR €l Iy

2) MEIRR AR Fhas

T, ARJF2 A 4-PEl S oni A7 7 A R B R AR, TR S A R R R I AR
PR o S e BRI A S A A AN R LR M -2 Bl 5 SRULI BAT ¥R A R, TR s 5 s aikie
R BB A KR, ToVE A 2 R BB 0 A

T T, (0<n<15) FIXGEIA £ T

¥)=1024x" " + xp.

1112

Faf( 205X ) X7y +xp’
Faf (T,;:x,y) =8x"y *+xy”.
Faf (T, ,;x,y )=16xy +x°
Faf (T,5;x,y ):3 X y° +xp’.
Faf (T, 45, 7) = 64x°y" + 3",
Faf (T, 5;x,y ):128xy +x°
Faf (T, 5:x,y) = 256x"y" +xy
Faf (T, ,;x,y ): 2y +x°

)

)=

8>
Faf (T, 4;x,y

(z
(
(
(Z.
(
(
(
Faf (T,
(
(z
(7
(z
(z
(7
(z

2048x" y'"? + xp.
Faf (T, ,0;x, y) 4096x"y" +xy°.
Faf (T,,,; x, y):8192x13y14+xy
Faf (T, ,,;x, y)=16384x14y15+xy
Faf (T, 5;x, y):32768x15y16+xy
Faf (T, ,,;x, y)=65536x16y17+xy
Faf (T,,5:%,y) =131072x" y"* + x°.
E&WH
FE R BRI S BB H (12161081).
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