
Pure Mathematics 理论数学, 2026, 16(1), 204-212 
Published Online January 2026 in Hans. https://www.hanspub.org/journal/pm 
https://doi.org/10.12677/pm.2026.161023  

文章引用: 周同, 桂海鑫. 谈常系数齐次线性微分方程组的标准基解矩阵[J]. 理论数学, 2026, 16(1): 204-212.  
DOI: 10.12677/pm.2026.161023 

 
 

谈常系数齐次线性微分方程组的标准基解矩阵 
周  同*，桂海鑫 

苏州科技大学数学科学学院，江苏 苏州 
 
收稿日期：2025年12月5日；录用日期：2026年1月3日；发布日期：2026年1月27日 

 
 

 
摘  要 

常系数齐次线性微分方程组是微分方程理论的重要组成部分，其标准基解矩阵能够反映系统的动态行为

和稳定性。因此，标准基解矩阵的求解是从理论分析迈向工程应用的关键步骤。本文以常系数齐次线性

微分方程组为研究对象，旨在给出其全体标准基解矩阵的统一表达式，并将该表达式应用于简谐振子的

自由振动问题。 
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Abstract 
Systems of Homogeneous linear differential equations with constant coefficients constitute an im-
portant component of differential equation theory. Their standard fundamental matrix can capture 
the dynamic behavior and stability of the system. Therefore, solving for the standard fundamental 
matrix is a critical step in transitioning theoretical analysis and engineering applications. This pa-
per focuses on homogeneous linear differential systems with constant coefficients, aiming to provide 
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a unified expression for all their standard fundamental matrices and to apply this expression to the 
free vibration problem of simple harmonic oscillators. 
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1. 引言 

线性微分方程组是微分方程理论中一类具有清晰代数结构与广泛应用背景的重要模型[1] [2]。众所周

知，求齐次线性微分方程组的基解矩阵是微分方程理论中的核心环节。事实上，一旦得到基解矩阵，便

能完全确定齐次线性微分方程组的所有解，进而可通过常数变易法等方法获得非齐次线性微分方程组的

通解结构。这不仅为线性系统的整体动力学行为提供了完整的解析刻画，也为进一步研究非线性系统奠

定了重要基础。 
本文是一篇教学研究类文章，研究对象为常系数齐次线性微分方程组(为方便起见，全文统一写成矩

阵形式)： 
′ =x Ax ，其中 A是一个 n 阶常数矩阵。                         (1) 

对于这类常系数系统，其基解矩阵的求解具有更加明确和系统的方法(详见[3]-[8])。同时，由于(1)具
有标准基解矩阵 teA ，这使得对其长期动态、稳定性及模态的分析变得更具操作性[9]。 

在国内外教材中，有关基解矩阵的理论已经相当完备[3]-[8]，并且很多教学与科研工作者还给出了新

的求解方法与应用[10]-[13]，这些进展不仅丰富了教学内容，也提升了相关方法在实际工程与科学研究中

的适用性。比起一般的基解矩阵，标准基解矩阵在求解初值问题上有着直接优势。为了给初学者呈现标

准基解矩阵在求解不同初值问题上的直接作用，本文将给出(1)的标准基解矩阵的统一形式，并具体展示

其在求解不同初值问题上的应用。本文成果预期能够为初学者系统地梳理和呈现标准基解矩阵的核心性

质，扫清其学习过程中的概念障碍。 
本文结构安排如下：第 2 节，给出本文所需要的基础知识，着重介绍基解矩阵和标准基解矩阵的定义及

相关性质。第 3 节，通过定理 3.1 给出标准基解矩阵的统一表达式，简要归纳、比较其各种计算方法。第 4
节，应用定理 3.1 求解不同的初值问题。特别地，我们还给出该定理在物理学中机械振动等问题中的应用。 

2. 预备知识 

本节，笔者分成两个子节，给出证明主要结果的预备知识及相关引理，相关内容详见[3]-[8]。 

2.1. 矩阵指数函数 

记 n n×M 为所有 n 阶实矩阵构成的 Banach 空间，即 

( )
, 1

| .
n

n n ij ijn n
i j

a a× ×
=

 
= = = 
 

∑M A A  
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设 n n×∈A M 。规定 0! 1= 。 A的零次幂是 n 阶单位矩阵 E 。于是，定义矩阵指数函数如下： 
 

2

0

1 1: ,
2

k
k

k
e
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∞

=

= = + + + + +
! ! !∑A A E A A A   

其中 mA 表示 A的 m次幂。由于上式右边的级数是绝对收敛的，所以 eA 良定义。进一步，矩阵指数函数

具有以下基本性质： 
(1) 若矩阵 A和 B 是可交换的(即 =AB BA )，则 e e e+ =A B A B ； 
(2) 对任何矩阵 A， eA 是可逆的，并且 

( ) 1
e e−−

=A A ； 

(3) 若 P 是一个非奇异的 n 阶矩阵，则 
1 1e e
− −=PAP AP P 。 

(4) 若
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是对角矩阵，则
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也是对角矩阵。 

2.2. 标准基解矩阵 

已知对任意的 n n×∈A M ，(1)的解集构成一个 n 维线性空间。由此，给出基解矩阵的定义。  
定义 2.1 如果矩阵函数 : n n×→Φ M 的 n 个列向量是(1)的解空间的一组基，则称 ( )tΦ 为(1)的一个

基解矩阵。 
笔者指出：以下判据常用来判断(1)的解矩阵是否为基解矩阵。 
解矩阵 ( )tΦ 是基解矩阵⇔ ( )det tΦ 恒不为 0⇔ ( )0det 0t ≠Φ 对某 0t ∈成立，其中 detB 表示矩阵 B

的行列式。由定义 2.1 不难发现，基解矩阵能够表示常系数齐次线性微分方程组所有的解。 
引理 2.1 设 ( )tΦ 为(1)的一个基解矩阵。则(1)的任意一个解 ( )tϕ 可表示为 

( ) ( )t t=Φ cϕ ， 

其中 n∈c  为常数向量。 
引理 2.2 设 ( )tΦ 为(1)的一个基解矩阵。对任意的非奇异常数矩阵C ， ( ) ( )t t=Ψ Φ C 是(1)的一个基

解矩阵。反过来，若 ( )tΨ 也是(1)的一个基解矩阵，则存在非奇异常数矩阵C ，使得 ( ) ( )t t=Ψ Φ C 。 
定义 2.2 设 ( )tΦ 是(1)的一个基解矩阵。称 ( )tΦ 为(1)的一个标准基解矩阵，如果存在 0t ∈使得

( )0t =Φ E 。 
引理 2.3 矩阵指数函数 teA 是(1)的一个标准基解矩阵。因此，对(1)的任意一个基解矩阵 ( )tΦ ，存在

非奇异常数矩阵C ，使得 ( ) tt e= AΦ C 。 
引理 2.4 若矩阵 A 具有 n 个线性无关的特征向量 1 2, , , nvv v ，它们对应的特征值分别为 1 2, , , nλ λ λ

(不必各不相同)，则矩阵 

( ) 1 2
1 2, , , ,ntt t

nt e e e tλλ λ = −∞ < < +∞ Φ v vv   

是(1)的一个基解矩阵。 

3. 主要结果 

本节，笔者将证明常系数齐次线性微分方程组的全体标准基解矩阵可以由一个统一表达式来表示，
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即定理 3.1。 
定理 3.1 常系数线性微分方程组(1)的全体标准基解矩阵为 ( )0t te −A ，其中 0t 是任意实数。 
下面，笔者把上述定理的证明分成两个引理来证。 
引理 3.1 对任意的 0 ,t ∈ ( )0t te −A

是(1)的一个标准基解矩阵。 
证明 对任意的 0t ∈，记 ( ) ( )0t tt e −= AΦ 。则 

( ) ( )( ) ( ) ( ) ( )
( )

( ) ( )0 0

2 12 3
0 0 0

1! 2! 1 !

kk
t t t tt t t t t t

t e e t
k

−
− −− − −′′ = = + + + + + = =

−
A AA A A

Φ A A AΦ  。 

因此， ( )tΦ 是(1)的解矩阵。又因为 ( )0t =Φ E (从而行列式非零)，所以 ( ) ( )0t tt e −= AΦ 是(1)的标准基解

矩阵。 
笔者指出：引理 3.1 可以直接利用 teA 是(1)的标准基解矩阵这一已知结论获得。事实上，任取 0t ∈， 

因为 tA 和 0t−A 可交换，所以 ( ) ( )0 0 0
1t t t tt te e e e e
−− −= =A A AA A 。记 ( )0

1te
−

= AC ，则 C 是一个非奇异常数矩阵。

根据引理 2.2， ( )0t te −A
是(1)的基解矩阵，进而由 ( )0t =Φ E 知它是(1)的标准基解矩阵。 

引理 3.2 如果 ( )tΦ 是(1)的一个标准基解矩阵，那么存在 0t ∈使得 ( )0t te −A
。 

证明 因为 ( )tΦ 是(1)的标准基解矩阵，所以由引理 2.3 知，存在非奇异常数矩阵 C 使得 ( ) tt e= AΦ C 。

注意到 ( )0t =Φ E 对某 0t ∈成立，故 ( )0 0
1t te e
− −= =A AC 。根据 tA 和 0t−A 可交换，故 ( ) ( )0t tt e −= AΦ 。 

综合引理 3.1 和引理 3.2，笔者得到定理 3.1 的证明。因此，任意给定一个常系数齐次线性微分方程

组，可以写出其标准基解矩阵的统一形式。 
设 ( )tΦ 是(1)的标准基解矩阵。根据引理 2.2 和定理 3.1，不难得到 

( ) ( ) ( )0 1
0 .t te t t− −=A Φ Φ                                   (2) 

因此，(1)的全体标准基解矩阵的求解可以转化为(1)的任意一个基解矩阵 ( )tΦ 的求解。如果矩阵 A 可

以对角化(如第 4 节例 2)，那么可以直接应用引理 2.4 计算出基解矩阵，再由(2)得到 ( )0t te −A
。 

更一般地，可以应用代数学中有关空间分解的结论计算标准基解矩阵 ( )0t te −A
。此外，利用其他方面的

代数知识也可以求解 ( )0t te −A
，比如基于若尔当(Jordan)标准型的方法。其优势在于理论简洁，然而计算起

来可能会比较复杂。又如根据哈密顿–凯莱(Hamilton-Cayley)定理，将 ( )0t te −A
的计算问题归结为求解带下

三角形矩阵的齐次线性微分方程组的问题，此法更适用于低阶矩阵 A [5]。 

4. 应用 

在第 3 节中，笔者给出了常系数齐次线性微分方程组的标准基解矩阵的统一表达式。利用这个统一

表达式，可以求相应初值问题的解。事实上，我们赋予(1)在 0t 时刻的初始条件 ( )0t =x η，则根据引理 2.1，
引理 3.1 以及解的存在唯一性， ( )0t te −A η是(1)的满足初始条件的唯一解。   

例 1 求解对角系统 

′ =x Ax ，其中
0
2 0

6
 

=  
 

A ， ( ) ( )T2 1,5=x 。 

解 由指数函数的性质(4)，方程组具有标准基解矩阵 
2

6

0
0

t
t

t

e
e

e
 

=  
 

A  

进而满足初始条件 ( ) ( )T2 1,5=x 的解为 
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( ) ( )
( )

( )
( ) ( )( )

2 2 T2 2 2 6 2

6 2

0 1
,

50
2 5

t
t t t

t

e
e e e

e

−
− − −

−

   
=   

   
=A x 。 

笔者指出：更一般地，对如下初值问题： 

′ =x Ax ，其中

1

2

n

a
a

a

 
 
 =
 
 
 

A


， ( ) ( )T
0 1 2, , , nt c c c=x  。 

结合矩阵指数函数的性质(4)，其解为
( ) ( ) ( ) ( ) ( )( )0 1 0 2 0 0

T

0 1 2, , , nt t a t t a t t a t t
ne t c e c e c e− − − −=A x  。 

例 2 求解 ′ =x Ax ，其中
1 2
4 3
 

=  
 

A ， ( ) ( )T3 1,0=x 。 

解 由 ( )det 0λ − =E A 得特征值 1 25, 1λ λ= = − ．进一步，得到对应于 1 2,λ λ 的两个线性无关的特征向量

( )T1,2=u 和 ( )T1, 1= −v 。利用引理 2.4 和(2)，方程组的基解矩阵和标准基解矩阵分别为 

( )
5

52

t t

t t

e e
t

e e

−

−

 
=  

− 
Φ 和 ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

5 3 3 5 3 3
3 1

5 3 3 5 3 3

+ 213
3 2 2 2 +

t t t t
t

t t t t

e e e e
e t

e e e e

− − − − − −
− −

− − − − − −

 −
= =  

 − 

A Φ Φ 。 

因此，满足例 2 初始条件的解是 ( ) ( ) ( ) ( ) ( ) ( )( )T3 5 3 3 5 3 313 2 ,2 2
3

t t t t te e e e e− − − − − − −= + −A x 。 

下面的例子体现了定理 3.1 在物理问题上的应用。 
例 3 考虑平面上角速度为 π的匀速旋转系统 

′ =x Ax ，其中
0

0 π 
=  π

−


A 。  

求满足初始条件 ( ) ( )T2 3,2=x 和 ( ) ( )T6 3,2=x 的解。 
解 已知它有标准基解矩阵 

cos sin
sin cos

t t t
e

t t
π − π 

=  π π 
A ， 

从而 

( ) ( )2 6 cos sin
sin cos

t t tt t
e e e

t t
− − π − π 

= = π π 
=A A A 。 

因此，满足 ( ) ( )T2 3,2=x 和 ( ) ( )T6 3,2=x 的解都是 
3 3cos 2sin
2 3sin 2cos

t t t
t

e
t

π π
π

−
π

   
=   +   

A 。 

从物理角度看，该系统描述的是周期为 2 的平面旋转运动。因此，如果初始时刻相差一个周期整数

倍且初始状态相同，那么解在时间演化上是完全相同的。 
例 4 考虑简谐振子的无阻尼自由振动方程： 

2 0x xω′′ + = ，其中 0ω > 是常数。                            (3) 

令 1x x=  (位移)， 2x x′=  (速度)，则(3)等价于系统 

′ =x Ax ，其中 2

1
0

0
ω


= −



 

A 。                             (4) 

https://doi.org/10.12677/pm.2026.161023


周同，桂海鑫 
 

 

DOI: 10.12677/pm.2026.161023 209 理论数学 
 

重现例 2 的方法可得， 

( ) ( ) ( )
( ) ( )

0 0 0

0 0

cos sin
sin cos

t t t t t t
e

t t t t
ω ω ω

ω ω ω
−  − −

=  − − − 

A
。 

因此，已知 0t 时刻的位移ξ 和速度ζ ，就可以知道任意时刻 t 的位移 ( )x t 和速度 ( )x t′ ：  

( )
( )

( ) ( ) ( ) ( ) ( )0

T

0 0 0 0cos sin , sin cost tx t
e t t t t t t t t

x t
ξ ζω ω ω ω ωξ ξ ζ

ωζ
−   = = − − − − + −   

 
+ ′    

A
。 

利用辅助角公式，笔者给出(3)的解的一般形式如下：  

( ) ( ) ( ) ( )( )0 0 0cos sin sinx t t t t t A t tω ω ωζξ
ω

φ= − − = − ++ ， 

其中 A 和φ 是两个常数。 
该解呈现周期为 2T ω= π ，振幅为 A 的振荡行为(图 1)。故(3)以周期 2T ω= π 作简谐振动。 

 

 
Figure 1. Undamped free vibration 
图 1. 无阻尼自由振动 

 
笔者指出：当ω = π时，(3)经过适当的变量变换即例 3 中的平面旋转系统。 
例 5 考虑有阻尼自由振动方程   

22 0x nx xω′′ ′+ + = ，其中 , 0n ω > 是常数。                      (5) 

比起(3)，(5)考虑了阻力，即多了带有阻尼值 n 的项 2nx′，笔者仍用定理 3.1 讨论其解的情况。 
首先，令 1 2,x x x x′= = ，则(5)等价于系统     

′ =x Ax ，其中 2

1
2

0
nω

 
=  
− − 

A 。                          (6)  

再令 ( )det 0λ− =A E ，得到 A 的特征值
2

1,2
2n nλ ω− ± −= 。下面进行分类讨论。 

(i) 小阻尼情形(即 2 2 0n ω−∆ <= )：此时 A 有一对共轭的复特征值 1 n iλ = − +Ω 和 2 n iλ = − −Ω ，其中
2 2nωΩ = − 。可以求得对应于 1λ 和 2λ 的线性无关的特征向量分别为 ( )T

11,λ=u 和 ( )T
21,λ=v 。 

应用引理 2.4，(6)的基解矩阵 ( )1 2( ) ,t tt e eλ λ=Φ u v 。再由(2)， 

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
0 0

0 0 0
1

0 2

0 0 0

1cos sin sin

sin cos sin

t t n t t

nt t t t t t
e t t e

nt t t t t tω
− − −−

 Ω − + Ω − Ω − Ω Ω =
 − Ω −

=
Ω − − Ω −  Ω Ω 

A Φ Φ 。 
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当给定 0t 时刻的位移ξ 和速度ζ 时，就可以得到任意时刻的位移和速度如下： 

( )
( )

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
0 0

0 0 0

2

0 0 0

1cos sin sin

sin cos sin

t t n t t

nt t t t t tx t
e e

nx t t t t t t tω
ξ ξ
ζ ζ

− − −

 Ω − + Ω − Ω −   Ω Ω = =  ′    − Ω − Ω − − Ω

   
   
  −  Ω Ω 


A

。 

利用辅助角公式，(5)有如下形式的解： 

( ) ( ) ( )( )0
0sinn t tx t ce t t θ− −= Ω − + ， 

其中 ,c θ 是两个常数。 
上式表明，在小阻尼情形下，系统(5)不再作周期振荡，而是振幅随时间增加而指数衰减的振荡。其

相邻振幅峰值的时间间隔 (即衰减振动的准周期)为 2T = π Ω 。图 2 是解 ( )x t 的图像，虚线表示

( ) ( )0n t tf t ce− −= 的图像。  
 

 
Figure 2. Free vibration with small damping 
图 2. 小阻尼自由振动 

 
(ii) 大阻尼情形(即 2 2 0n ω−∆ >= )：此时矩阵 A 有两个不同的特征值 1 nλ µ= − + 和 2 nλ µ= − − ，其中

2 2nµ ω= − 。经计算，对应 1 2,λ λ 的两个线性无关的特征向量是 ( )T
11,λ=u 和 ( )T

21,λ=v 。由引理 2.4，得

(6)的基解矩阵为 

( )
1 2

1 2
1 2

t t

t t

e e
t

e e

λ λ

λ λλ λ
 

=  
 

Φ 。 

进一步，得到 

( ) ( ) ( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1 0 2 0 1 0 2 0

0

1 0 2 0 1 0 2 0

1
0

1 2 1 2

1
2 2 2

1
2 2 2

t t t t t t t t

t t

t t t t t t t t

n ne e e e
e t t

n ne e e e

λ λ λ λ

λ λ λ λ

µ µ
µ µ µ
µ µλ λ λ λ
µ µ µ

− − − −

− −

− − − −

+ − + − 
 =

+ − + − 
 

=A Φ Φ 。 

赋予(6)以初值条件 ( ) ( )T
0 ,t ξ ζ=x ，可得(6)的解为 

( )
( )

( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1 0 2 0 1 0 2 0

0

1 0 2 0 1 0 2 0
1 2 1 2

1
2 2 2

1
2 2 2

t t t t t t t t

t t

t t t t t t t t

n ne e e ex t
e

n nx t e e e e

λ λ λ λ

λ λ λ λ

ξ
µ µ
µ µ µ
µ µλ λ λ

µ

ξ
ζ

µ
ζ λ

µ

− − − −

−

− − − −

+ − + −  
 = =   + −′ 

   
   
    + −








A
。 

对应地，(5)的解(图 3)为 

( ) ( ) ( )1 0 2 0
1 2

t t t tx t c e c eλ λ− −= + ， 
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其中 1 2,c c 是两个常数。 
上式表明，在大阻尼情形下，系统(5)运动不再是振荡的，而是随时间增加而非振荡指数衰减到 0(注

意 1λ 和 2λ 都是负数)。  
 

 
Figure 3. Heavily damped free vibration 
图 3. 大阻尼自由振动 

 
(iii) 临界阻尼情形(即 2 2 0n ω−∆ == )：此时 A 有二重特征根 nλ = − 。利用空间分解的方法[5]，有 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

0 0 0 0 0
0 2

0 0

1
1

t t t t n t t t t t t
e e t t e

n t t n t t
nλ λ− − − −  − −

 = + − − =    − − − 

+
−

A E A E 。 

给定(6)以初值条件 ( ) ( )T
0 ,t ξ ζ=x ，就得到(6)的解： 

( )
( )

( ) ( ) ( )
( ) ( )

0 0 0 0
2

0 01
1t t n t t nx t t t t t

e e
n t t n t tx t

ξ ξ
ζ ζ

− − − +   − −
= =   

   
   
  − − − −′   

A
。 

进而得到(5)的解： 

( ) ( ) ( )( ) ( ) ( ) ( )0 0
0 0 01n t t n t tx t e n t t t t e a t t bξ ζ− − − −   = + − + − = − +   ， 

其中 ,a b 是两个常数。 
上式解的运动规律的图像与图 3 类似。在该情形下，(5)的运动也是呈现衰减的(最快非振荡指数衰

减)。结合情形(i)，(ii)和(iii)，n ω= 是阻尼的临界值。当 n ω< 时，系统(5)具有振动性；而当 n ω≥ 时，系

统不再呈现振动。 

5. 结语 

本文给出了常系数齐次线性微分方程组的全体标准基解矩阵的统一表达式。最直接的好处在于： 给
定任意时刻的初始状态，都可以利用该表达式求出相应的特解。最后，笔者指出此结果的局限性在于不

适用于变系数系统。对此，佩亚诺–贝克(Peano-Baker)级数构成了相应的理论框架，其核心在于通过时间

顺序的多重积分，给出变系数系统标准基解矩阵的级数表示。感兴趣的读者可自行查阅，兹不详述。 
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