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Abstract

In recent years, diffusion models have demonstrated remarkable capabilities in solving inverse
problems through a single diffusion prior, thereby eliminating the need for task-specific retraining.
However, existing methods focus primarily on the reverse generation process while neglecting the
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implicit patterns inherent in this process, which often compromises their effectiveness. In this pa-
per, we propose a novel Range null-space fusion method that synergistically integrates data fidelity
constraints with image prior constraints, thereby ensuring data consistency and perceptual authen-
ticity, and effectively mitigating the impact of these implicit patterns. This method significantly en-
hances the performance of diffusion models in solving inverse problems, achieving highly compet-
itive results compared with state-of-the-art approaches. The proposed method provides a versatile
and efficient solution for addressing image reconstruction challenges.
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Table 1. Quantitative evaluation of typical image restoration tasks on the CelebA dataset

F 1. CelebA ¥iE& FHAEIGE RESHIEEITM

CelebA SR x 4 SR x 8 Deblur (gauss) Colorization
Method PSNR/FID/LPIPS PSNR/FID/LPIPS PSNR/FID/LPIPS PSNR/LPIPS
H'y 28.02/128.22/0.301 24.77/153.86/0.460 19.96/116.28/0.564 43.99/0.197
DPS 24.71/34.69/0.304 22.38/41.01/0.348 24.89/32.64/0.288 N/A
DDRM-100 28.84/40.52/0.214 26.47/45.22/0.273 36.17/15.32/0.119 25.88/0.156
DDNM-100 28.85/35.13/0.206 26.53/44.22/0.272 38.70/4.48/0.062 23.65/0.138
SSD-100 28.84/32.41/0.202 26.44/42.42/0.267 38.62/4.36/0.060 23.62/0.138
RNSF-100 28.74/32.08/0.202 26.42/42.14/0.267 38.62/4.36/0.060 23.88/0.137
DDRM-30 28.62/46.72/0.221 26.28/49.32/0.281 36.05/15.71/0.122 36.48/0.237
DDNM-30 28.76/41.36/0.213 26.41/48.25/0.277 37.40/6.65/0.084 25.25/0.184
SSD-30 28.71/36.77/0.208 26.32/44.97/0.271 38.34/4.98/0.065 24.11/0.159
RNSF-30 28.70/36.87/0.207 26.24/45.27/0.271 38.34/4.92/0.065 24.05/0.162
Table 2. Quantitative evaluation of typical image restoration tasks on the ImageNet dataset
=2 BEE LARMEGERESHEEITMH
ImageNet SR x 4 SR x 8 Deblur(gauss) Colorization
Method PSNR/FID/LPIPS PSNR/FID/LPIPS PSNR/FID/LPIPS PSNR /LPIPS
H'y 26.26/106.01/0.322 22.86/124.89/0.469 19.33/102.33/0.553 27.40/0.231
DPS 20.34/72.33/0.485 18.38/76.89/0.538 24.89/32.64/0.288 N/A
DDRM-100 27.40/43.27/0.260 23.74/83.08/0.420 36.48/11.81/0.121 36.44/0.224
DDNM-100 27.44/39.42/0.251 23.80/80.09/0.421 40.48/3.33/0.041 36.46/0.219
SSD-100 27.45/37.69/0.248 23.76/82.11/0.409 40.32/3.07/0.039 35.40}1/0.215
RNSF-100 27.39/38.75/0.248 23.72/83.12/0.412 40.32/3.03/0.039 36.46/0.223
DDRM-30 27.17/46.14/0.269 23.50/84.53/0.426 35.90/13.35/0.130 36.48/0.237
DDNM-30 27.22/40.12/0.256 23.53/74.60/0.414 37.67/6.91/0.081 36.46/0.229
SSD-30 27.13/38.24/0.251 23.44/76.35/0.411 39.23/4.64/0.053 36.22}1/0.223
RNSF-30 27.07/41.37/0.230 23.41/82.56/0.422 39.24}/4.63/0.053 37.14/0.230
Reference Measurement
E
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x
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Figure 1. Qualitative comparison of noise-free linear inverse problems on the CelebA dataset
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