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摘  要 

本文针对二维分数阶表面准地转SQG方程的存在全局解，在初始数据 0θ 属于非齐次各向异性Sobolev空

间
 
 
 

H 0, 1 1
2

α α< < 条件下，利用Bony分解理论和Littlewood-Paley分解技术，证明了该方程解的稳定性。 
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Abstract 
We prove the stability of a global solution for the fractional SQG equation under the conditions that 
the initial data 0θ  belongs to the nonhomogeneous anisotropic Sobolev space H 0,α  with 
1 1
2

α< < . The main tools employed in our analysis are the Bony decomposition theory and Little-

wood-Paley decomposition technique. 
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1. 引言 

二维分数阶表面准地转 SQG 方程是由三维不可压缩欧拉方程推导出的二维模型。本文重点研究由下

式给出的耗散 SQG 方程： 

( )

( ) ( )0

0,

,0 ,

u v
t
x x

αθ θ θ

θ θ

∂ + ⋅∇ + −∆ = ∂
 =

                               (1) 

其中 ( )1 2,1 , 0vα ∈ > 是耗散系数，而 ( ),x tθ θ= 是两个空间变量 x 和时间 t 的实标量函数。速度场 u 通过

Riesz 变换确定：  

( )2 1
2 1, , .u θ θ θ θ θ⊥∂ ∂ = − = − = −∆ −∆ 
                            (2) 

显然， 

1 1 2 2div 0.u u u= ∂ + ∂ =                                   (3) 

( ) ( )0 1α α−∆ < < 通过 Fourier 变换定义， 

( ) ( ) ( )2 ˆ ,f fα αξ ξ ξ−∆ =  

其中 f̂ 表示[1]的 Fourier 变换。为便于记号，我们写为 ( )
1
2−∆ = Λ 。 

分数阶 SQG 方程是对经典 SQG 方程的扩展，不同于经典拟地转方程，分数阶 SQG 方程能更精确地

描述具有非局部性和依赖性的动力学过程。因此，各向异性分数阶方程成为捕捉复杂方向系统中的强大

工具，例如大气动力学、多孔介质流动及生物流体力学领域。 
分数阶 SQG 方程的过往研究主要集中于各向同性的情形。Kiselev 与 Nazarov 在[2]中取得突破性进

展，证明了临界 SQG 方程的全局正则性。对于次临界分数阶 SQG 方程 ( )1α < ，Constantin 与 Vicol 在[3]
中证明了其全局存在性与唯一性。 

除解的全局正则性外，弱解及其对初始数据的依赖性研究亦取得进展。Resnick 探索了经典 SQG 方

程的弱解及其长期行为，该研究至今仍对理解非正则解具有重要影响[4]。 
Danchin 与 Paicu 通过推进微积分方法，在临界空间中深入剖析解的精细特性。这些方法论在研究分

数阶 SQG 方程及相关模型时发挥了关键作用。分数阶 SQG 方程的各向异性情形比各向同性情形更为复

杂，这源于其对称性的缺失及额外的正则性要求。近期研究通过用分数阶算子 ( )α−∆ 替代标准扩散项

11k θ∂ 和 22k θ′∂  [5] [6]。 
在(1)式中， ( )α θ−∆ 取代了经典 SQG 方程中的扩散项，构建了更一般的理论框架。文章定理以及证

明借鉴了文献[7]的主要技术思想和方程中能量估计的方法，文献[8]提供了处理分数阶算子的分析技巧，
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将该思想融入方程中耗散项与非线性项的进一步估计，因此本文将方法结合在一起，将其推广应用于各

向异性 Sobolev 空间中分数阶拟地转方程的稳定性问题。即如下定理， 

定理 1 存在常数C ，使得对于所有初始数据 0,
0 H αθ ∈ ，且

1 1
2

α< < ,满足 0,0 H

v
Cαθ < ，方程(1)和(2)

的解在 [ ]( ) [ ]( )0, 2 1,0, ; 0, ;L H L Hα α∞ ∞ ∩ ∞ 中具有一致有界性。因此，我们得到 

( ) 0, 0,

2
22

0
d .

t

H H
t v t v

Cα α
αθ θ  + Λ ≤  

 ∫                             (4) 

2. 预备知识 

让我们首先回顾： S 表示 N
 上光滑函数构成的 Schwartz 空间，其中函数的各阶导数在无穷远处衰

减；S′为缓增分布空间，是 S 在通常配对下的对偶空间。本文利用 Littlewood-Paley 分解详细刻画各向异 

性 Sobolev 空间 0,H α ，分析中主要采用 Bony 分解[9]。设 ( )ϕ ξ 为支架包含于环域
3 8|
4 3

ξ ξ ∈ ≤ ≤ 
 

 的光

滑函数， χ 为支集包含于球
4|
3

ξ ξ ∈ ≤ 
 

 的光滑函数，则有 

( ) ( ), 2 1.q

q
ξ χ ξ ϕ ξ−

∈

∀ ∈ + =∑


  

为方便起见，我们用 j∆ 表示非齐次各向异性二进块，在 2x 方向上的定义如下： 

( )( )
( )( )

1
2

1
2

0 2,
ˆ 1,

ˆ2 0.

j

j

j
j

a j
a a j

a a j

χ ξ

ϕ ξ

−

− −

∆ = ≤ −
∆ = = −

∆ = ≥

当

当

当





                            (5) 

此外，我们引入以下低频截断算子： 

1
: , .q p

p q
S u u q N

≤ −

= ∆ ∈∑ 对所有                               (6) 

命题 1 对于 f S ′∈ ，可直接验证如下恒等式成立： 

( )1

0, 2.

0, 5.
p q

p q q

u p q

S u u p q−

∆ ∆ = − ≥

∆ ∆ = − ≥

若

若
                            (7) 

命题 2 (Bernstein 不等式[9])设 k N∈ 。设 ( )1 2,R R 满足 1 20 R R< < 。则存在仅依赖于 1 2,R R 的常数C ，

使得对于任意1 a b≤ ≤ ≤ ∞及任意 ( )2au L∈  ，下列不等式成立： 

( )

( )

1 12
1

1

1 1
1 2

ˆsupp 0, sup ,

ˆsupp 0, , sup .

ab

a aa

k
k a b

LLk

k k k k
L LLk

u R u C u

u R R C u u C u

α

α

α

α

λ λ

λ λ λ λ

 + − +  

=

− − +

=

⊂ ⇒ ∂ ≤

⊂ ⇒ ≤ ∂ ≤




 

定义 1 非齐次 Sobolev 空间 Hα 由以下范数定义： 

( ) ( )
1
222

( )
ˆ1 dHa aα

α
ξ ξ ξ = + 

 ∫




 

其中 ( )â ξ 表示 a 的 Fourier 变换。 

命题 3 (一维非齐次 Sobolev 空间中的乘积法则)设 ( )0a Hα∈  与 ( )1b H α∈  ， 0 1
1 1,
2 2

α α− < < ，
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0 1 0α α+ > ，则在一维非齐次 Sobolev 空间中， ( )0 1
1
2ab H

α α+ −
∈  与乘积法则成立如下： 

( ) ( ) ( )
1

0 1 02 1 .H H Hab C a bα α α α+ − ≤
  

                           (8) 

定义 2 Sobolev 空间 ( ) ( ), 2 ,H α α α α′ ′∈  定义为 

( ) ( ) ( ) ( ), 2 2

1
222 2

1 2 1 2ˆ1 1 d dHa aα α

α α
ξ ξ ξ ξ ξ′

′ = + + 
 ∫





 

命题 4 对于 ( ), 2a H α α′∈  ，Sobolev 范数可等价表示为 

( )
( ) ( ), 2 2

1
222

1 2 1 2
,

2 , d d .j k
j kH

j k
a a x x x xα α

α α
′

′+

∈

 
= ∆ ∆ 
 
∑ ∫







 

命题 5 Sobolev 范数也可表示为 2L 空间与 Sobolev 空间的混合范数，有 

( ) ( )( ) ( )
, 2 2

22 1;
2 ,

x x

j
jH L H

l

a aα α α
α

′
′= ∆



 



 

其中 ( )( )2
2 1;x xL Hα⋅

 

表示混合范数，是将 2x 方向上的 2L 范数与 1x 方向上的 Sobolev 范数相结合。 

引理 1 [7]对于
1
2

α′ > 和α ∈，有 

( )( ) ,; .L H Ha C aα α α ′∞ ≤
 

                               (9) 

引理 2 [10]设 ( )a t 是定义在上的函数，设 ( ) 2 2
k
q

k k La t a
α
′= ∆ ⋅ 是 2l 空间中随时间变化的函数序列，

满足
1 ,2 ,1 2
2

q qα ′> < < ∞ < < ，则有 

( ) ( ) ( )2 2 2

1 1 1 1, where 1.q q
k l L L

a t C a t a t
q q

α ′Λ + =
′

≤  

引理 3 对满足
1 1
2

a α′< ≤ < 的实数α 和α′，当
1 1, , 0,4 4H H H
α α αθ

′ ′∈ ∩ ∩ 和
1, 0,4H H
αα αθΛ ∈ ∩ ，则存在

常数C 使得 

( ) ( )1 11, ,,0,4 4 0,2 4
Δ Δ 2 Λ Λ ,j

j j j H H HH HL
u C d α ααα α

α α αθ θ θ θ θ θ θ′′
−⋅∇ ⋅ ⋅ +≤           (10) 

其中 ( )2 1,u θ θ= −  和 ( )1
jd l∈  。 

3. 引理 3 证明 

为消除各向异性的影响，我们将估计分为两个部分： 

( ) ( )1 2
1 1 2 2, .j j j jF u F uθ θ= ∆ ∂ = ∆ ∂  

首先，我们估计 1
jF 项 

( )

( )( )

11
22 44

22

1
21 1 4

2

1
1 1 ;;

1 1 1 1 ;

Δ

, .

xx

x

j j L HL H

j u L H

F u

T T u R uθ

θ

θ θ

−−

−

  
  
        

 ∂  
  
 

=

=

∂

∆ ∂ + + ∂




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由(6)式可得， 

( ) ( )
( ) ( )

( )

11
441 2 11 22 2

1 1 1 1
2 xx

x x

j u j k k HH k jL L

T S uθ θ −− −
− ≤

∆ ∂ ≤ ∆ ∆ ∂∑








， 

应用 Sobolev 空间的乘积规则，(8)式可得 

( ) ( ) ( )
11

04 241 2 21
2

1 1 1
2

1
xx

x

j u k kH H LH k jL

T S uθ θ− −
− ≤

∆ ∂ ≤ ∆ ∂∑






， 

利用引理 1 和 Bernstein 不等式，我们得到 

( ) ( )
11

2441 221
2

1 , 24

1 1 1 1;
2

1
2

2 ,

xx
x

j u k kL H LH k jL

k
kH L

k j

T S u

C u α

θ θ

θ

− ∞

′

 
 
  
 

−
− ≤

− ≤

∆ ∂ ≤ ∆ ∂

≤ ⋅ ∆

∑

∑





  

利用引理 2，令 , 1q q′= ∞ = ，则  

( ) ( )
11 ,
4 241 21

2

1 ,
4 0,

1 1
2

1

Δ 2 Λ

Λ

x
x

k
j u H LH k jL

j H H

T C u

C c u

α

α
α

α

α

θ θ

θ

′−

′

− ≤

∂ ≤ ⋅

≤ ⋅

∑
                     (11) 

同样地，我们可以在 Sobolev 空间中应用引理 1、引理 2 和 Sobolev 空间的乘积规则(8)式，我们还得

到： 

( )
( )

( ) ( )
( )

( )

( ) ( ) ( ) ( )

11
441

11 22
22

1
4 2

2

1
0 4

21 1
2 2

1
2 2 4

2

1 ,
40,

1 1 1 1
2

1 1 1
2

1 1 1
2

1 ;
2

1

0

2

.

x
L x

x

x x
x x

x

x
x

j j k k HH k j L

k k H L
k j

k kH H
L Lk j

k
k kL L H

k j

j HH

H

T u S u

S u

S u

u

C c u α
α

θ

α

θ

θ

θ

θ

θ

−−

∞

′

∂ −
− ≤

−
−

 

≤

−
− ≤

− ≤
 
  
 

∆ ≤ ∆ ∂ ∆

≤ ∂ ∆

≤ ∂ ∆

≤ ∆ ∆

≤ ⋅ Λ

∑

∑

∑

∑









 

 



           (12) 

类似地，我们应用引理 1、引理 2 和 Bernstein 不等式得到 

( ) ( ) ( )
( ) ( )

( )

( )

( )

1 1
4 4

21 1
2

2
2

1
04

2
2

1
2 04

2 2

2
1

2

1 1 1 1

1 1

1 ;
2

;

1

1

,

2

x x
x

x

x

x x

j k
k k

j k
k

j j k kH H
L

L

k kH H

Lk

j

k
k kL H L H

k
k k

R u u

u

C u

θ θ

θ

θ

− −

∞

− ≤
′− ≤

− ≤
′− ≤

−

′

 
  ′
  
 

≤
′− ≤

′∆ ∂ ∆ ∆ ∆ ∂

∆ ∆ ∂

⋅ ∆ ∆

≤

≤

≤

∑

∑

∑

 







 

            (13) 
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1,
4 2

1,
4 0,

1

1

2
2

.

k
H L

j H H

j k
C u

C c u

α

α
α

α

α

θ

θ

′

′

− ≤

⋅ Λ

⋅ Λ

≤

≤

∑
 

因此，由(11)、(12)和(13)式可得 

( )( )

( )

1 1
2 24 1 1 4

2 2

1 1 1, , ,
4 4 40, 0, 0,

1 1, ,
4 40, 0,

1
1 1 1 1; ;

1 1 1

1 1

,

,

X x
j j uL H L H

j j jH H HH H H

j H HH H

F T T u R u

C c u C c u C c u

C c u u

α α α
α α α

α α
α α

θ

α α α

α α

θ θ

θ θ θ

θ θ

− −

′ ′
′

′
′

   
   
         

∂= ∆ ∂ + + ∂

≤ ⋅ Λ + ⋅ Λ + ⋅ Λ

≤ ⋅ Λ + Λ





 

其中 jc 是 ( )2l  中的一般元素，且对于 1,2 j
jj cα−≥ − ≤ ，且 2

j jc d= 。 

( ) ( )

( )

( )

1 1
2 2 24 4

2 2

11 ,
2 44

2

1 1 1, , ,
4 4 40, 0,

1 1 1 1 ; ;

1 1 ;

1 1

2

2 .

x x

x

j j j jL L H L H

j
j j HL H

j
j H H HH H

u u

u c

Cd u u

α

α α α
α α

α

α α α

θ θ θ θ

θ θ

θ θ θ

−

−

′

   
   
      
   

− 
 
  
 

−

∆ ∂ ∆ ≤ ∆ ∂ ∆

≤ ∆ ∂ ⋅ ⋅

≤ ⋅ Λ + Λ

 



 

基于 Riesz 变换 ( )1,2k k = ，其中 k 是满足
2 2

1 2

1kξ

ξ ξ
<

+
的 Fourier 乘子，我们有： 

( ) 

( )

( )

,

2 2

2 2

,

2 2

2 2

2 2
2 2

1 2

2 2

2 1

ˆ2 1

ˆ2 1 .

j
k j kH

L l

j k
j

L l

j
j H

L l

Rα α

α α

α
α

α
α

α
α

θ ξ θ

ξξ ϕ θ
ξ ξ

ξ ϕ θ θ

′

′

′

′

′

+ ∆

= + ⋅
+

≤ + ⋅

=

=



                     (14) 

接下来，我们通过 Bony 分解对 2 2u θ∂ 进行估计，得到：  

( )2 2 2 2

1

2 2 2 2
2

2 2 2 2 2
2

2 2 2 1
33

j j k k
k k

k

j k k k k
k k k k

j k k k k
k k k k

j k k
k

k
k j kj

u u

u u

S u u

S u S

θ θ

θ θ

θ θ

θ

+∞ +∞

′
′=−∞ =−∞

+∞ + +∞

′ ′
′ ′=−∞ =−∞ = +

+∞ +∞ +∞

′+
′=−∞ =−∞ = +

+ −
≥ − =< −

 ∆ ∂ = ∆ ∆ ∆ ∂ 
 
  = ∆ ∆ ∆ ∂ + ∆ ∆ ∂  

  

 


 = ∆ ∆ ∂ + ∆ ∆ ∂ 
 

= ∆ + ∆ ∂  +
 

∑ ∑

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ 2 2

2 2 2 1 2 2
3 3 4 4 4

2 2 2 2 2 2 1 2 2
3 3 4

1 2 2 1 2 2
4 4

k

j k k k k
k j k j j k k j k j

j k k j k k j k k
k j k j j k

j k k j k k
k j k j

u

S u S u

S u S u S u

S u S u

θ

θ θ

θ θ θ

θ θ

−∞

+ −
≥ − < − − ≤ < − > +

+ + −
≥ − < − − ≤

− −
< − > +

∂ ∆

 
= ∆ + ∆ ∂ + + + ∂ ∆  

 
= ∆ ∆ ∂ + ∆ ∆ ∂ + ∆ ∂ ∆

+





 
   

∆ ∂ ∆ ∆



+



∆ ∂

∑

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑

∑ ∑

         (15) 
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1 2 3 4 5.I I I I I= + + + +   

对于 2 4 5, ,I I I ，由(7)可得： 

2 2 2 2 2 2
3 3 1

j k k j l k
k j k j l k

I S u uθ θ+
< − < − ≤ +

= ∆ ∆ ∂ = ∆ ∆ ∆ ∂∑ ∑ ∑ ， 

这里 1 2l k j≤ + < − ，那么 2j l− > ，即 2 0I =  

4 1 2 2 2 2
4 4 2

j k k j l k
k j k j l k

I S u uθ θ−
≤ − ≤ − ≤ −

= ∆ ∂ ∆ = ∆ ∆ ∂ ∆∑ ∑ ∑ ， 

这里 2 6l k j≤ − ≤ − ，那么 6j l− ≥ ，即 4 0I =  

5 1 2 2 2 2
4 4 2

j k k j l k
k j k j l k

I S u uθ θ−
> + > + ≤ −

= ∆ ∂ ∆ = ∆ ∆ ∂ ∆∑ ∑ ∑ ， 

这里 2j l− > ，即 5 0I =  

所以 2I ， 4I 和 5I 均为 0，这意味着 

( ) ( ) ( )2 2,1 2,2
2 2 2 2 22 21

3 4
.j j j k j k jk jk

k j j k
S SF u u u F Fθ θ θ+ −

≥ − − ≤

= ∆ ∂ = ∆ ∂ ∆ + ∆ ∆ ∂ = +∑ ∑           (16) 

因此，利用(8)式、Höder\不等式、Bernstein 不等式以及散度为 0 条件 2 2 1 1u u∂ = −∂ ， 

( ) ( )
( )

( )

( ) ( )

( ) ( )

( )

11
44

21 2
2 2

1
04 2

2

1
04 2

2

1
024 2

1
24

2

2,1
2 2 2

3

2 2 2
3

2
2 2 2

3

2
2 2 2

3

2
1,

3 1

2

3 1

2

2

2 2

2

x
x x

x

x

x

j j k k HH
k jL L

k k HH Lk j

j

k k HH Lk j

j

k k HLH Lk j

j
l

l kH L
k j l k

j

k j l k

F S u

S u

C S u

C S u

C u

C

θ

θ

θ

θ

θ

−− +
≥ −

+
≥ −

+
≥ −

+
≥ −

 
 
 ≥ − ≤ +  
 

≥ − ≤ +

= ∆ ∂ ∆

≤ ∂ ∆

≤ ⋅ ∂ ∆

≤ ∂ ∆

≤ ∆ ∆

≤

∑

∑

∑

∑

∑ ∑

∑ ∑













( )

( )

1
2 4 2

2

1 ,
4 0,

2 2
1;

22
1

3

2 2 2 2

2 2 2 ,

x

k l l k k
l L H L

j
k l k

H H
k j

u

C uα
α

α α α α α

α α α

θ

θ ′

− ′ ′−  
 
  
 

− ′−

≥ −

∆ Λ

≤ Λ∑



 

其中 ( ) ( )2 2 2 22 1k kL Lu C u∆ ≤ ⋅ ∆
 

. 

由于
1
2

α′ > ，我们得出结论： 

11 ,
42 0,42

2,1
1;

.j j HL H H
F C d uα

α
αθ− ′

 
 
  
 

≤ ⋅ Λ


                         (17) 

随后，我们估计 2,2
jF ，其中 j jθ θ= ∆ 。利用分解 ( )1 1j j j j j− +∆ = ∆ + ∆ + ∆ ∆ ，即 2,2

1 2 2
4

j j k k
j k

F S u θ−
− ≤

= ∆ ∆ ∂∑ 。 

由于 

( ) ( ) ( )( ) ( ) ( )( )1 2 2 1 2 2 1 2 2, .j k k j k k k j kS u S u S uθ θ θ− − − ∆ ∆ ∂ = ∆ ∆ ∂ − ∆ ∆ ∂                (18) 
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因此 

( ) ( )

( ) ( )( )

( ) ( ) ( )( )( )
( ) ( )

1 2 2
4

1 2 2 1 2 2
4 4

1 2 2 1 2 1 2
4 4

1 2 2 2 2 1 2 2
4 1

,

,

, .

j k k
j k

j j k k j k k
j k j k

j j k k j k j j j j j k
j k j k

j j k k j j k j k j
j k j k

S u

S u S u

S u S S u

S u S u S S u

θ

θ θ

θ θ

θ θ θ

−
− ≤

− −
− ≤ − ≤

− − −
− ≤ − ≤

− −
− ≤ − ≤

∆ ∆ ∂

 = ∆ ∆ ∆ ∂ + ∆ ∆ ∂ 

 = ∆ ∆ ∆ ∂ + ∆ − ∆ + ∆ + ∆ ∆ ∆ ∂ 

 = ∆ ∆ ∆ ∂ + ∂ + − ∂ ∆ 

∑

∑ ∑

∑ ∑

∑ ∑

         (19) 

则 

( )

( )

22 2

2

2,2
2 2 1 2 2 2

4

1 2 2
1

,

I II III,

j j j j j j k k jLL Lj k

k j k j j Lj k

F S u S u u

S S u

θ θ θ θ θ

θ θ

−
− ≤

−
− ≤

∂ + ∆ ∆ ∂

+ − ∂ ∆

= +

 

+

= ∑

∑               (20) 

其中，利用分部积分法 

( ) ( )
( ) ( )( )
( ) ( )

2

2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

d

d

d .

j j j j j jL

j j j j j

j j j j j j L

S u S u x

S u S u x

S u x S u

θ θ θ θ

θ θ θ

θ θ θ θ

∂ = ∂ ⋅

= ∂ ⋅ + ⋅∂

= − ∂ − ∂

∫
∫
∫







 

所以， 

( ) ( ) ( )2 2 22 2 2 2 1 1
1 1 .
2 2j j j j j j j j jL L L

S u S u S uθ θ θ θ θ θ∂ = − ∂ = ∂  

对于 ( ) 22 2I j j j L
S u θ θ= ∂ ，我们可以用类似于 1

jF 进行估计，从而得到 

( ) ( )1 1 1, , ,
2 4 4 40, 0,1 1 1 1Δ Λ Λ .j j j j H H HL H H

S u C d u uα α α
α α

α αθ θ θ θ θ′ ′
′∂ ≤ ⋅ +            (21) 

对于 21 2 2
4

II ,j k k j Lj k
S u θ θ−

− ≤

 = ∆ ∆ ∂ ∑ ，令 1h ϕ−=  和 ( ) ( )1h x xh x= 。那么， 

( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

[ ] ( ) ( )

1 2 1 2

1 2 1 2 1 2 1 2

1 1
2 1 2 1 2 1 2 1 2 2 1 2

2 1 2 1 2 2 1 2 1 2 1 2 2 2

2 2 1 2 2 1 2 20,1

, ,

, ,

2 , 2 ,

2 2 , , , d

2 2 ,

j k K

j k k j k

j j
k k k

j j
k k k

j j
k k

S u x x

S u x x S u x x

y S u x x S u x x y x x

h y S u x x y S u x x x x y y

y h y S u x x ty x

θ

θ

ϕ ξ ϕ ξ θ

θ

θ

−

− −

− − − −
− −

− −

−×

 ∆ 
= ∆ − ∆

  = − −   

= − − −

= − ∂ −

∫
∫














 

( )

[ ] ( ) ( ) ( )

1 2 2 2

1 2 1 1 1 1 2 2 1 2 2 20,1

, d d

2 , , d d .j
k k

x y y t

h y S u x x ty x x y y tθ−×

−

= ∂ − −∫




 

通过(8)，我们推导出 

( ) ( ) ( ) ( ) 1
2 42

11 2 2 1 2 1 1 1 2 2 2;
4

, , 2 , d .
x

j
j k k k kL L HH

S u x C h y S u x y yθ θ∞− −−
 ∆ ⋅ ∂ ⋅ −  ≤ ∫





   

通过对两边取 2L 范数，并利用范数的积分被积分的范数所限制的性质，结合卷积不等式，我们得到： 
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( ) ( )
11

2 2 44 2 2 2
1 2 2 1 1 1 , ;

, , 2 .
x x

j
j k k k kL R L L R HH L

S u x C S uθ θ− ∞  
 
  
 

−
− − ∆ ⋅ ∂  ≤ ⋅   

此外，应用引理 1、引理 2、Bernstein 不等式，并利用 4j k− ≤ 这一条件，我们得到： 

( )

( )

( )

2

1 1
2 2 24 42 2 2

1
2 2 2 4

2

1 1, ,42 2 4

1 2 2
4

1 1 1 ; ; ;
4

1 4;
4

1
4

,

2

2 2 2

2 2

x x x

x

j k k j Lj k

j
k k jL L L H L H

j k

k j ks ks
k k j kL L H

j k k

k j j
k jH HL

j k

S u

C S u

C u

C u αα α

θ θ

θ θ

θ χ

θ θ

∞

−
− ≤

−    
 −  
   − ≤       

+∞
− −  

  − ≤
 − ≤ =−∞  
 

− −

− ≤

 ∆ ∆ ∂ 

≤ ⋅ ∂

≤ ⋅ ∆ ⋅

≤ ⋅ Λ ⋅

∑

∑

∑ ∑

∑

 



 



10, ,
4

2
12 .j

j H
H

C d u

α

α α

α α θ′
−≤ ⋅ ⋅ Λ

 

对于 ( ) 21 2 2
1

III k j k j j Lj k
S S u θ θ−

− ≤

= − ∂ ∆∑ 中 ( )1 2 2k j k jS S u θ− − ∂ ∆ 我们可以估计为 2,1
jF 。 

此外，通过应用 Riesz 定理，我们得到 

( ) ( )1 1 1, , ,
2 4 4 40, 0,2 .j

j j j H H HL H H
u Cd α α α

α α
α α αθ θ θ θ θ θ θ′

′
−∆ ⋅∇ ∆ ≤ ⋅ Λ + Λ  

引理 3 已证明。 

4. 定理 1 的证明 

局部光滑解可简单得到。若存在全局先验界，则全局解的存在性可通过标准紧性方法推导。首先，

将算子 j∆ 作用于方程(1)， 

( ) ( ) ( ) 0,j t j ju v αθ θ θ∆ ∂ + ∆ ⋅∇ + ∆ −∆ =                          (22) 

并与 jθ∆ 进行内积运算，我们得到能量估计式 

( )2 22

221 d
2 d

,j j j jL LL
v u

t
αθ θ θ θ∆ + Λ ∆ ≤ ∆ ⋅∇ ∆                      (1) 

利用 j jθ θ= ∆ ，并应用引理 3 (其中α α′= )，可得： 

12 2 0, ,
4

22 2d 2 2
d

.j
j j jL L H

H

v Cd
t α α

α α αθ θ θ θ−∆ + Λ ∆ ≤ ⋅ Λ                   (24) 

两边同时乘以 2 jα 并取 1l 范数，可得出结论： 

( ) ( ) 10, 0, 0,,
4

22 2d 2 .
d H H H

H

t v t C
t α α αα

α αθ θ θ θ+ Λ ≤ ⋅ Λ                    (25) 

根据 Sobolev 嵌入
1 1, ,
2 4H H
α α
 ，我们可以推导出 

( ) ( ) 0, 10, 0, 0,,
2

22 2d 2 .
d HH H H

H

t v t C
t αα α αα

α αθ θ θ θ θ+ Λ ≤ Λ                  (26) 

应用插值不等式 

0, 1, 0,1 0,,
2

2 ,H H H H
H

C Cα α α αα

αθ θ θ θ θ≤ ⋅ ≤ ⋅ Λ                      (27) 

由此可知 
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( ) ( ) 0,0, 0, 0,

2 22d 2 .
d HH H H

t v t C
t αα α α

α αθ θ θ θ+ Λ ≤ Λ  

对于所有 [ ]0,t∈ ∞ ， ( ) 0,H
t αθ 满足以下全局界限与小性条件： 

( ) 0, .
H

vt
Cαθ <  

因此， 

( ) ( )0, 0,

22d 0.
d H H

t v t
t α α

αθ θ+ Λ ≤  

假设 t t∗= ，我们得到 ( ) 0,
*

H

vt
Cα

θ = ，并且 

( ) ( )
* *

0, 0,

22 *
0 0

d d d 0, 0, .
d

t t

H H
t t v t t t t

t α α
αθ θ  + Λ ≤ ∈ ∫ ∫                     (28) 

我们得到 ( ) ( ) ( )
*

0,0,0,

2 2 2*
0

d 0
t

HHH
t v t t ααα

αθ θ θ+ Λ ≤∫ ，那么 ( ) ( ) 0,0,
* 0

HH

vt
Cαα

θ θ≤ < ，这与假设相矛

盾。 
因此对于 [ )0,t∈ ∞  

( ) ( )0, 0,

2
22

0
d .

t

H H

vt v t t
Cα α

αθ θ  + Λ ≤  
 ∫  

因此，定理 1 的证明至此完成。 
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