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Abstract

We prove the stability of a global solution for the fractional SQG equation under the conditions that
the initial data 6, belongs to the nonhomogeneous anisotropic Sobolev space H"* with

1
3 <a<1.The main tools employed in our analysis are the Bony decomposition theory and Little-

wood-Paley decomposition technique.

XEF|H: #E, PVINE. SRR Sobolev A1 H 4 SR UL T RE RS E )], BRIS S, 2026, 16(1): 228-237.
DOI: 10.12677/pm.2026.161025


https://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2026.161025
https://doi.org/10.12677/pm.2026.161025
https://www.hanspub.org/

e, VIR

Keywords

Anisotropic Sobolev Space, Fractional Quasi-Geostrophic Equation, Littlewood-Paley
Decomposition, Bony Decomposition

Copyright © 2026 by author(s) and Hans Publishers Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 5|8
YRR R T RS SQG Ty FE S H = 4E N AT TR R R S ) e A SCE SR
A HRIFER SQG FHHE:

M

%ﬂl.vaw(—A)“e:o,
49(x,0) =0, (x),

Hrae(1/2,1),v >0 ZFERARE 1 0= 0(x,t) W2 AL T x R[] ¢ ) SEbR R B H L u il i

Riesz 28 Huffii i€ -
u:[_ 0, g,igj:(_@e,w):we. @
NErS Ay
div = By, + 0,1, =0. &)

(-A)* (0 < <1) i3 Fourier 224t 5E X,
() £ ()=l 7 ().

b f RIR[1]I0 Fourier 28, NETILS, OIS H(-A)2 =A .

S SQG TR XA M SQG T RRINY R, AT MU TR, 0 E SQG Tr e B
iR BAT IR R S E AR i) 3h ) 2 R . DRI, 25 1 ek 2 B O R O A 4R R R T ) R G P ) K
TH, BRS8N 11% 20 R s S AE YR A ) 5.

SEHY SQG FREREF R FEEP T LR EMHEFE . Kiselev 5 Nazarov 1E[2] 0BS5S H5 1 1F
J&, UEW] TS SQG Ty R AR IE M, . X TR 3 HF SQG Ji#E (e <1)» Constantin 55 Vicol ££[3]
HPER T A R AR e — 1 .

R4 Ry IE MR A, 550 S R AR B0 A AT FT IR IS 2E JiE « Resnick 8RR 1484 SQG J7
PR 59 D AT 9, 12T 58 224 U0k AR IE U A B A B S5 (4]

Danchin 5 Paicu M HEBE A 73 735, LEIRG 52 A RN BT i S AR I o IX B80T VR AEDT 5040
B SQG J5 1 R A RAAR N A% 1 RBEAE . 0 BB SQG T AR 2% 1] S A4 175 % b & v RIS TR B N B
A, IXYE T HO BRI Bk 2k R UM IE MR R o T AR St A O B (—A)" B AR T O
k0,0 F1 k'0,,6 [5][6]-

FEDRF, (-A)" 0BT A8 SQG R I B, i T R B HESE . S E DL R
W5 % 1 SCHR[ 710 2 EEOR AT AR B Bl vH i 5%, SCER[S 3R M 1 AL 2E 73 BB 527 10 70 M 4555

DOI: 10.12677/pm.2026.161025 229 P2k


https://doi.org/10.12677/pm.2026.161025
http://creativecommons.org/licenses/by/4.0/

e, AN

Rz BT R O S AE N IR — DAl ih, BRI SOR RS &8 i, RHE M T4
[ 57 1% Sobolev % [A] A /3 Kb Ut e T R I ReE P 1)l R G R e 2,

v

oo <G FREAI2)

1 FAERHEC, TR AR 9, € HO H%<a<1,iﬁ&||€o|
FoRAE L ([0,00); HO ) A L ([0.00): 1 ) AT — BUF 4. BRI, FAT145)

2
2 v
lo)| el < [Ej . 4)

2

0 +vJ.(: A0

2. M&EHEIA

RATE R S 27 RY F M AR Schwartz 2917, SLeh B 50 % B S K 5 993 A 2
Wi SR, R S AERATRA T HORHEA. A& ORI Littlewood-Paley 4MF HE41 21 1157
Pt Sobolev %] 1% , 447t 2R Bony SHRIO]. 1 (&) W3 4ot & F 3R, {g SIEETE %} 3

WEM, %i%@é‘?ﬂ%{feﬂwﬂs%} O, W

VEER, y(£)+ X p(27¢)=1.

qeN
NTTEREIL, BATH A, FRAEFH R & W R =3, £E x, T7 1 e LR .
Aa=0 Mj<-2,
Aa=F'(x(&)a)  Hj=-1 (5)

Aa=F" (¢(2‘f§2 )a) M i>0,

sbAh, FATTTIN BL AR A W A1
Su= Y Au, XA geN. (6)

p<g-1
WAL XTF fes, ATEZERAE N ESR R
AAu=0, Flp—q|z2.
A (S‘Hquu):O, #|p—q|=5.

P

(7

f7RE 2 (Bernstein AER[9) & ke N« B (R,R) WL 0<R <R, . WAFAEMNKIT R, R, M C,
R TAEE 1<a<b<o MfFEuecl (RZ) AL

11
aa < Ck+1/1k+2(;7gj
u b= u 0

supp#i = B(0,RA) = sup
‘a‘zk

suppii = C(0, R, A, R,A) = C™* 2" |u|| . < sup|jou
‘a‘:k

 <CUR ],

& 3 1 9E55IK Sobolev #¥[A] H* FH LA RYEEUE X
e, =( [+ le) 0]

Horbra (&) %R a 1Y Fourier 24t
@R 3 (—4EAEF UK Soboley 1A TRBULN) M a e H (R) 5 be H (R) , —%<a0,al<%,

DOI: 10.12677/pm.2026.161025 230 S H


https://doi.org/10.12677/pm.2026.161025

e, VIR

1
ay+a, >0, MFE—4EIEFFR Sobolev ZEMIH, abe H W 2 (R) 5FBUE WAL T

Jab o gy [Pl s - )

Haoml—%(R) < C||a i

£ X 2 Sobolev Z¥[a] H** (]Rz )(a,a’ eR)E N

%mﬂw@q=(g41ﬂél)(rﬂé " Ja |dédé)
W4T acH™ (Rz) , Sobolev JEEL AT ZEM KRN

1

) 2
k (x19x2)| dxldxzj .

o

_ /a+ka
e (R _[ Z 2

#7HE 5 Sobolev JEE B ] R/~ A 2 258 5 Sobolev Z MR A VEEL, B

|

2/ ”A a

H""""(Rz)

(R 1% (R ))

() ’

Horfr]- || ))i‘%T/Fé SVLHL 2K x, T B 2 V530S x, U7 R R Sobolev YEEUAHES & -

BlH 1 [7]XﬂL€Fa'>55FﬂaeR, H

|a

"L’J(R;H"’(R)) s C"a"H‘I'“' : ©)

ka

SIZ 2 (1018 a(r) R5EUER EMBREG B a, (1) = Al 27 07 50 b BERT 112 O B3,
?V%Ea>%,2<q<oo,1<q'<2, g

1
a wherel+i':1.

o O <l o o] where L+

A%a(r)

1 1, 1,
%lﬁﬂﬁﬁ&%w'gdH@ié&aﬂla', MOeHY nHY NnH* MIA“9e HY nH", N{EHE
W CER

(8, (u-v0)[8,0)], <C-d, 27 0], ([0 o 270

L
[[Z @t ||9||H?a

A6 . )- (10)

Hru=(-R,0,R0)Md, el'(Z).
3. 5|3 3 iERA

HHERS PR RON, BTG T 0 N A5
Fi=A, (40,0),F =A,(u,0,0).

J
1
2 .
Ry, iH 4

A, (T, 0,0+ T, u, + R (u,,0, 9))

Bk RAMEF O

|

LZ[RXZ ;H’i] - "A/‘ (”18'6)

@Hq

DOI: 10.12677/pm.2026.161025 231 P2k


https://doi.org/10.12677/pm.2026.161025

e, AN

H1(6) A FI 13,

|27

JT

S p3 "A k- I”IAkale)"H’%(Rxl)

\k\2

brodl,.,

J%2 ] Sobolev 4= Al FFRALHN,  (8)2Ln[ 15

‘ N,
FIFH 513 1 A Bernstein A2, A5 3

|.7.26], %,

JTw

< 3 sl 100l

o,

JTwm

S b IILm[RXZ ;Hi] |A.2,6].-
‘k*]‘SZ
< 2 C2 i

e,

k LZ’
= jl<2
%Uﬁgélﬂzy /i'\q=oo,q'=l, I}_l\”
Ja7.0 s ¥ Clul, i |l
VN2 (ry,) k-2 (1D
<Ce¢ "ul "H%'a’ A0 1O

[ FEHL, FRATTATPATE Sobolev 25 [A]FR N FH 51 #E 1. 5] FE 2 F1 Sobolev 2 [A] FFRFAL N (8):, FATIES
F:

|AjTalo”1|

> A, (S008u)|,

\k j‘<2 ( Xl)

< 3 Isc0lyo 1Al
k— 'SZ

_L
H3(Ry)

(%)

2(Ryy)

(B

1
S92 DT I e )
‘§?MQMMM%RW]
<Coc; NG| . |, 5 -
K, AN G 1. 513 2 1 Bernstein A& R 1533
A .R(u,,0,0)| - < A, A A,0,60
| Jj (u1 1 )||H 4(Rn) LZ(JRXZ) ‘j k‘<2|| ul )" (RXI)
s F(e.)
< ‘_%ZHAM"H% [2¢0,6],0 (13)
j—k|<
e—k'|<1 LZ(R 2)
Z c-2* "A ul"L R, H4 "A 0||L2R HO)
\‘2 v

DOI: 10.12677/pm.2026.161025 232 P2k


https://doi.org/10.12677/pm.2026.161025

e, VIR

< 2 C2 5 A6
|j-k|<2
<C-c ||u1 |A“E o

Ft, H11). (12)F1(13)2 A5

"Ffl LZ[RXZ ;Hii] ) Aj (Z‘181€+T@19u1 +R(”19619)) LZ{R ;Hﬁ%}
<Coc;u, 5 |A“E e T A | +C-c; |, 5 o
<Cecy (ol e A% o + ol e A7) o)
Hope £ 17P(Z)Pi—on®k, BXT j2-127<¢,, Hcl=
‘<A.7(u1619)|A19>L2 < LZ[]R H 4} 0||L2[R H4J
<l ool ;H%] & 2o e
<Cd,- 27| L ( 7 I VN R Y I VN )
. s ¢ . A
FTF Riesz B R, (k=12), HPR 2L k__ <1/ Fourier &1, FAIH:
(k=12 R e ee
IR e =2 (12T ) A R0
2 |2
=[5 (1+|§|2)5¢;‘,- fk 0 (14)
IR P P
<l |(1+1F) o, 6) | =16l
2|2
Bk, FA@EE Bony XS u,0,0 #EATA T, 153
A, (1,0,0) = AJ( > Z Ak,uzAkazﬁj
k=—0k'=
=A, [Z(%A u,A 0,0+ Z A uzAaéjJ
f=—c0 k'=k+2
=A, (Z S, U, A, 0,0+ Z Z A, 0 aj
k= k=—0 k'=k+2
=A, ([ j k+2uA60+ZSk 0,0A uzj (15)
k>j-3 k<j-3 k=-0

:A/,[£ >+ jSMuzAkazm( DI JSklﬁzé’AkuZ]

k>j-3  k<j-3 li-kj<4  k<j-4 k>j+4
=A; D S AG0+A, Y S, LN DO+A, Y S, 0,0Au,
k>] -3 k<j-3 |j-k|<4

+A, Y 8, 10,00 u, +A; DS, 10,0Au,

k<j-4 k>j+4

DOI: 10.12677/pm.2026.161025 233 P2k


https://doi.org/10.12677/pm.2026.161025

e, AN

=L +L+1L+1,+1.
XTI, 1,1 B(T) A4
Li=A, Y 8,000 =A Y Y Au,A0,0,

k<j-3 k<j-31<k+1
KR I<k+1<j-2, Walj-1>2, B1,=0
I=A, Y §,.,0,0M0,=A; Y > Ad,OAu,,

k<j-4 k< j-41<k-2
EHI<k-2<j-6, BWalj-1=6, W1, =0
=AY S 0,0Mu,=A, Y > A,0Au, ,

k> j+4 k> j+4 1<k-2

XE|j-1]>2, BII;=0
FrA L, 1,M1 135280, XEWE
FP=A (u0,0)=A, Y 8,,(0,0) A, +A; Y S, (uy) 00,0 =F} + F2. (16)

J
k>_] -3 |j-k|<4

Bk, FIHE®)A . Hoden A% 0. Bernstein NG LK B R 0 564 0,u, = —0u,

‘||F/21| = szzuAjSM (6,0) Aku2|
>j-

<2
>j-3

J
<c.22 Y H|
k>j-3
<C Z 2 I
<cy ¥ ||A 6’II[R H4J||A AR

k>j-3I<k+1

L
H 4

117%(]1@,(l ) 2(r,)

L2(zy)

Sk+2 (629)"11% ||Aku2||H0

P(Ry)

Sk+2 (82‘9)”}1% "AkuZ "HO 2(R

Sk+2 (820)"11% "AkuZ "H“ 2

)2

A”’u1

k> j-3 I<k+1

<C z z 2§2k(1—a)2la2—2ka’22ka’ ||A 0||L2[R H4J

A%y,

o'

<C z 2§2k(1—a)2—2ka’ "0"[_,%“
k2j3

Fr Aty o ) < A

) ]RZ L2 RZ

HT o >— PR
A%u, (17)

2,1
|77

B, BAE T F22 L KA1 0,=0,0 FIHAHRA, = (A, +A,+A L )A BIF? =A, 3 S, 1,A,0,0 .

‘] k‘<4

<C-d,[6]

Lz[R H 4 i

SN
(A8, 1, [A (0,0)= A, (S, (1,) A (8,0)) =S, (1,) A (A, (0,0)). (18)

DOI: 10.12677/pm.2026.161025 234 P2k


https://doi.org/10.12677/pm.2026.161025

HEM, IVINE
[l 1
A Y S (uy)A,(8,0)
|i—kl<4
=AY [AnSe i |A0,0+A; Y S, ((1,)A,(8,0))
\/ kj<4 |i—kl<4 (19)
=A; Y [ALS ,uz]AOH-i—A Z (( =8, Ju, (A, +A,+A,)A, (A, (0,0)))
|j—k|<4
=A, > [ALS i, |AB,0+5, (u2)6 0,+ > (S.,-S,)u,0,A,0,.
= =kt
ny
(F220,), =(S,(w)2,0,|0,) , + ‘ W([A Sty |A1,8,0(0,)
. _;I«Sk_l -$,)18:0,0,]0,) , (20)
=T+11+11I,
Horr, IR 5B 3%
(8;(1,)0,6,10,) . =[S, (1,)0,0,-6,dx,
- .[R(azsj ()0, +8; (uy)- 829j)9jdx2
=—[.0,0,5, (u,)0,dx, ~(S, (1,)0,0,|6,) , .
FrEL,
(5,020 [0,), =~ 1(5,0.0)0,|0,), = (s, Gaa) 0|0
ﬁ?ﬂ%g@»@ﬂ@%,ﬁﬂﬂ%%%@%@ﬁﬁﬁﬁ,Mﬁﬁﬁ
(6,5, (0)[,6) , <C-d o] o (1l |+l A0 o ) e

WF= Y (A8, ]8,0,0/0,) , . & h=F"pMh(x)=xh(x). B4,

=i
[A,.8, 1, 6, (x,.x,)
= A Sty (x,%,) = S, uyA 0, (x,,x,)
=F Lo (270 ) (@St () =Sty (5 -2) ' [ 0(27 1 )(£) 8 (x,) |
:zijh(zij)(S ity (X025 = 3, ) = Sy (X, xz))é (X1 x, = v, ) dy,
=-2/{ o 121 (27 ) S, 051, (31, =1,) 6, (%%, — v, ) dyydt
= ooy (27721000 (313, = 19,) 0, (5.3, =y, ) dyad.
wE(s), BT P

N:A S 1u2:|9( xZ)”H CI ‘h 2 y2 “'Sk ]8141" JR L2 é ("x2_y2)

H% dy,.

TR P 2GR IR VSRR AR AR 2 T BT BR 1 AR, 25 S B RAANE S, RATAG 2

DOI: 10.12677/pm.2026.161025 235

LN


https://doi.org/10.12677/pm.2026.161025

e, AN

1

O

<C277|S 0|

)i

L°°R L2

“”[AJ’ Siathy ] 0, (x,) ;

1
LZ[RXZ ;H4] :

eAh, BIFHGIE 1. 51FE 2. Bernstein A%, ORI |j—k| <4X—54F, RAGE):

2 {4 Sim ]

1)

|j-k|<4
\fzk\;“c d j"Sk g ul" R ;Lz)"ek”Lz[sz;H%J 91' LZ[R,Q;H%J

< 2 27 Ay Z 2°r® ||9k||Lz[R,Q;H%}'%m

R B
S\j;\ac'zkv Ay, 2(r?) 2 ”9 ” j H‘l‘
<C- dj . 2’/05 Aaul o "9"2%(1 .

HFM= Y ((S,-S,)mdA0,

|j—k]<1

)2 (8, -8, 0,00, RATAT VAR F2

Ak, dEE N Riesz EH, FAER

(8, e-v0)a,6), < a2 el e (|ae],.. el = +lel, i [a6

yaadd )'

5181 3 EHEH.
4. FETE 1 HOIERR

JEER G AT A A B . ARSI, M R A vE il b R AR . B

BT A, (ERTIITR(1),
A (0,0)+A,(u-VO)+vA (-A) =0, (22)
5 A0 HITAREE, G RREEMN TR
55| ; Lz +v <(A;(u-V0)[A0) ., (1)
FIH 0, =70, FENH 513 3 (HEF’ a=a'), W1F:
d a ja a
<l |aa 6l <ca,-27=|a%] .. ||e||2 (24)
PRI [EI I e LA 27 FFEL 1 Y4, P14 iR
_||0(t |H°"’ +2v||A o(t || e 25)
1
H4% Sobolev A\ H2” q—>H4’ s FRATTAT DAHE
Hﬁlmwﬂv (e <ClElncllOF 1 A% 0. - (26)
N FH A A S 2
2 a
| . <C ”H| H% H"’ <C "0| % A%O 0 27)
FH L AT
DOI: 10.12677/pm.2026.161025 236 s E


https://doi.org/10.12677/pm.2026.161025

e, VIR

"9 mﬂa+2v"A“9@)2Q <C6], 0 A eiaa
T e[0,0] s [0(0)], 0. /2 A 42 R SR 55N 251
o0 <
[,
W ma+4Aa ) o <0-

fie=c ., Rivaso(c)],, =5 A

L df"@ W o de+v]! ”A,H )0 de<0,0€[0,6]. (28)
ﬁiﬂ]f@?ﬂ“ﬁ(r)Zova+v_[(:|A“9( ot <[OO) s BALO( ) <IOO) 0 < 0 S RERF
R T £ € [0,00)

[0 . +v [ A0

2
||H0"Z

Rk, SEEE 1 IER] 2 L5 .

E&WE

AT 545 B E K B AR5 4 (12461020) 1 3 FF .

SE

(1]

(2]

[9]
[10]

Iorio Jr., R.J. and Iorio, V.d.M. (2001) Fourier Analysis and Partial Differential Equations. Cambridge University Press.
https://doi.org/10.1017/cbo9780511623745

Kiselev, A., Nazarov, F. and Volberg, A. (2006) Global Well-Posedness for the Critical 2D Dissipative Quasi-Geo-
strophic Equation. Inventiones Mathematicae, 167, 445-453. https://doi.org/10.1007/s00222-006-0020-3

Constantin, P. and Vicol, V. (2012) Nonlinear Maximum Principles for Dissipative Linear Nonlocal Operators and Ap-
plications. Geometric and Functional Analysis, 22, 1289-1321. https://doi.org/10.1007/s00039-012-0172-9

Resnick, S.G. (1995) Dynamical Problems in Non-Linear Advective Partial Differential Equations. PhD Thesis, The
University of Chicago.

Constantin, P., Majda, A.J. and Tabak, E. (1994) Formation of Strong Fronts in the 2-D Quasigeostrophic Thermal Active
Scalar. Nonlinearity, 7, 1495-1533. https://doi.org/10.1088/0951-7715/7/6/001

Pedlosky, J. (1987) Geophysical Fluid Dynamics. Springer.

Jin, H.S., Kwak, M. and Lkhagvasuren, B. (2022) Stability Result for the Surface Quasi-Geostropic Equations with
Horizontal Dissipation in Anisotropic Sobolev Space. Journal of Mathematical Physics, 63, Article ID: 091507.
https://doi.org/10.1063/5.0087229

Chemin, J.-Y., Desjardins, B., Gallagher, I. and Grenier, E. (2000) Fluids with Anisotropic Viscosity. ESAIM: Mathe-
matical Modelling and Numerical Analysis, 34, 315-335. https://doi.org/10.1051/m2an:2000143

Danchin, R. (2005) Fourier Analysis Methods for Pde’s. Lecture Notes.

Wu, H. and Fan, J. (2012) Weak-Strong Uniqueness for the Generalized Navier-Stokes Equations. Applied Mathematics
Letters, 25, 423-428. https://doi.org/10.1016/j.am1.2011.09.028

DOI: 10.12677/pm.2026.161025 237 S H


https://doi.org/10.12677/pm.2026.161025
https://doi.org/10.1017/cbo9780511623745
https://doi.org/10.1007/s00222-006-0020-3
https://doi.org/10.1007/s00039-012-0172-9
https://doi.org/10.1088/0951-7715/7/6/001
https://doi.org/10.1063/5.0087229
https://doi.org/10.1051/m2an:2000143
https://doi.org/10.1016/j.aml.2011.09.028

	各向异性Sobolev空间中分数阶拟地转方程的稳定性
	摘  要
	关键词
	Stability Results of Fractional Surface Quasi-Geostrophic Equation in Anisotropic Sobolev Space
	Abstract
	Keywords
	1. 引言
	2. 预备知识
	3. 引理3证明
	4. 定理1的证明
	基金项目
	参考文献

