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摘  要 

本文构建了一类引入潜伏者隔离仓(QE)的SEIR传染病动力学模型，旨在从动力学角度量化评估潜伏期隔

离措施对传染病传播的影响。利用下一代矩阵法推导了模型的基本再生数R0，作为判定传染病是否消亡

的阈值；通过Lyapunov第二方法与LaSalle不变集原理，严格证明了当R0 < 1时无病平衡点的全局渐近稳

定性；利用灵敏度分析识别出影响传染病传播的关键参数。数值模拟结果表明，提高疫苗接种率及潜伏

者隔离率能显著降低感染峰值、延缓传染病传播进程、缩短传染病持续时间。该研究针对潜伏期实施精

准隔离、协同推进疫苗接种的防控策略提供了理论依据与决策支持。 
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Abstract 
This paper constructs a class of SEIR infectious disease dynamics models that incorporate a quar-
antine compartment for latent individuals, aiming to quantitatively assess the impact of latent-pe-
riod isolation measures on disease transmission from a dynamical perspective. Using the next-gen-
eration matrix method, the basic reproduction number (R0) is derived as the threshold for deter-
mining whether the infectious disease will die out. Through Lyapunov second method and LaSalle in-
variance principle, the global asymptotic stability of the disease-free equilibrium is rigorously proved. 
Sensitivity analysis is applied to identify key parameters influencing disease transmission. Numerical 
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simulation results demonstrate that increasing the vaccination rate and the isolation rate of latent 
individuals can significantly reduce the peak number of infections, delay the spread process, and 
shorten the duration of the epidemic. This study provides theoretical foundations and decision-mak-
ing support for the precise implementation of isolation during the latent period and the coordinated 
promotion of vaccination as part of prevention and control strategies. 
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1. 引言 

传染病作为威胁人类健康的重大公共卫生问题，其传播机制与防控策略始终是研究热点。据世界卫

生组织统计，全球每年约有 1700 万人死于传染病，占总死亡人数的 28% [1]。传染病不仅直接危害个体

健康，还可能通过家庭传播引发社会矛盾[2]，甚至像 COVID-19和埃博拉一样导致全球公共卫生危机[3]。
传统防控手段如药物治疗、疫苗接种和卫生教育虽能有效降低发病率[4] [5]，但面对新发传染病时，快速

响应的隔离措施往往成为遏制传播的关键[6] [7]。经典的 SEIR 模型是分析传染病动力学的基础工具[8] 
[9]，但其未充分考虑潜伏者的传染性和隔离干预的动态影响[10]。 

近年来，随着隔离措施在突发公共卫生事件中的广泛应用，学者们在经典 SEIR 框架中引入了隔离

仓室，构建了多种带有控制项的动力学模型，并对其动力学性态进行了深入分析。例如，童亚纯通过扩

散的 SIS 传染病模型研究了时空传播特征[11]，发现在空间异质性环境下隔离措施效果显著；周嘉颖的分

数阶建模方法为传染病时空动力学研究提供了新的视角[12]，而非均匀环境中的空间动力学研究则强调

了环境异质性对防控策略的影响[13]。付鑫婕基于复杂网络的动力学分析表明[14]，早期隔离能有效降低

网络中的传播效率。如在 SIR 模型中加入隔离措施，发现早期隔离可显著降低感染峰值[15]；通过 SEIR
模型证明，隔离率的提升能有效缩短传染病持续时间。然而，现有研究多聚焦于显性感染者的隔离，对

潜伏期个体的防控作用探讨不足[16] [17]。研究表明，潜伏期感染者同样具有传播能力[18]，忽视这一群

体的隔离可能导致防控效果大打折扣。扩散距离的研究表明空间因素对隔离效果产生重要影响，而基于

排队网络的病例外溢问题研究为实际应用中的参数设定提供了实证支持。Alnafisah 等人通过马尔可夫

SEIR 模型证实了潜伏期传播的重要性[19]，Wang 等则通过整合社会心理因素优化了 SEIR 模型[17]，进

一步强调了潜伏期干预的必要性。 
本研究基于 Anderson 和 May 提出的传染病传播理论框架[15]，结合关于隔离措施的实验数据，构建

了带有潜伏者隔离仓的 SEIR 模型。通过量化隔离措施对传播参数的影响，揭示不同防控强度下的传染病

演化规律。含非线性发病率和垂直传播的 SEIR模型研究为本模型处理复杂传播机制提供了重要参考[13]，
研究结果可为突发公共卫生事件中的精准隔离策略提供理论依据，具有重要的现实意义。 

2. 模型建构 

将某一地区的人群分为易感者、潜伏者、被隔离的潜伏者、有症状感染者、被隔离的感染者、恢复

者。假定各个人群混合均匀，人口自然输入率和死亡率分别为 p 和 µ 。S 代表那些尚未感染但有可能被

Open Access

https://doi.org/10.12677/pm.2026.161021
http://creativecommons.org/licenses/by/4.0/


张妞妞 等 
 

 

DOI: 10.12677/pm.2026.161021 182 理论数学 
 

感染的人群。假设易感者以 β 的概率接触潜伏者或者染病者。考虑疫苗供给能力的影响，接种率为 ε ，
短期内接种疫苗具有完全保护效力，接种疫苗后转化为恢复者。 E 是具有传染性但未表现出任何症状

的人群。从易感者中，一部分人在接触到病原体后，会进入潜伏期。在这个阶段，他们可能不会表现出

症状，但仍然可以传播疾病。η表示潜伏者与有症状感染者的传染率的比值 ( )0 1η< < ，潜伏者发病率

为α ，潜伏者中检测确诊后以隔离率 δ 进行入院隔离成为被隔离的潜伏者 EQ 。 EQ 代表在潜伏期被检

测出并被隔离在特殊设施(如隔离仓)的人群。被隔离的潜伏者的发病率为α ，被隔离的潜伏者以σ 的

概率发病转入有症状感染者隔离仓，被隔离的潜伏者以 1r 的概率自愈转化为恢复者，被隔离的潜伏者的

病死率为 1θ 。I 在潜伏期结束后，个体进入感染期，开始表现出症状并具有传染性。有症状感染者中检

测确诊后以隔离率 λ 进行入院隔离治疗成为被隔离的感染者 IQ ，有症状感染者自愈率为 r ，有症状感

染者的病死率概率为θ 。 IQ 代表在感染期被检测出并被隔离的人群。被隔离的感染者的自愈率为 2r ，

被隔离的感染者的病死率为 2θ 。 R 代表有症状感染者在康复后进入这个阶段，他们通常对疾病具有免

疫力，不再具有传染性。 
在以上假设下的各个人群转化见图 1。 
 

 
Figure 1. Evolutionary relationship diagram of different population groups 
图 1. 各人群演化关系图 
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Table 1. Description and assigned values of parameters 
表 1. 各参数说明及对应取值 

参数 表示含义 取值 来源 
β  易感者接触到有症状感染者而被感染的概率 0.6 [1] 
η  潜伏者与有症状感染者的传染率的比值 0.3 [16] 
α  潜伏者的发病率 0.2 [15] 
λ  有症状感染者被检测出后的隔离率 0.6 [15] 
r  有症状感染者的恢复率 0.1 [13] 

1r  被隔离的潜伏者的治愈率 0.1 [18] 

2r  被隔离的感染者的治愈率 0.1 [18] 
σ  被隔离的潜伏者的发病率 0.2 [15] 
ε  疫苗接种率 [0, 1] 变量 
p  人口输入率 0.1 [13] 
µ  人口自然死亡率 0.0001 [13] 
δ  潜伏者被检测出后的隔离率 [0, 1] 变量 
θ  有症状感染者的病死率 0.005 [18] 

1θ  被隔离的潜伏者病死率 0.001 [18] 

2θ  被隔离的感染者病死率 0.005 [18] 

3. 基本再生数 R0 

利用下一代矩阵法[15]求模型的基本再生数 0R ，受感染仓室为 E ， I ， ( )F X 表示新感染疾病的矩

阵， ( )V X 表示传染病方程组间的转移矩阵，设中间变量： 1m δ α µ= + + ， 2m r λ µ θ= + + + ，

3 1 1m rσ θ µ= + + + ， 4 2 2m r θ µ= + +  
由(1)得到： 
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则模型(1)的下一代矩阵为： 
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模型(1)的基本再生数为：  
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4. 平衡点的稳定性 

通过线性化模型(1)分析平衡点的稳定性得到如下雅可比矩阵： 
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定理 4.1 (无病平衡点的局部稳定性) 
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求上述雅可比矩阵的特征值： 
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当 0 1R < ，无病平衡点 0A 局部稳定。 
定理 4.2 (无病平衡点的全局稳定性) 

当基本再生数 0 1R < 时，无病平衡点 0 0,0,0,0,0NpA
ε µ

 
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， 全局渐近稳定。 

证明： 
构造 Lyapunov 函数： 

V E kI= +  
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其沿系统轨迹得导数为： 
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代入 0S S≤ 并合并同类项得： 
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当 0 1R < 时，有 

0dV
dt

≤  

当且仅当 0E I= = 时， 0V = 。由 LaSalle 不变集原理，所有轨迹收敛于 0A ，无病平衡点 0A 全局渐

近稳定。 

5. 灵敏度分析 

定理 5.1 (灵敏度指数) 
设模型任意参数为θ ，基本再生数 0R 是θ 的函数( ( )0 0R R θ= )，则参数θ 对 0R 的标准化灵敏度指数

(NSI)定义为： 

( ) 0
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θ
∂
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∂

 

在传染病动力学模型中，对基本再生数 0R 进行参数灵敏度分析有助于理解各因素对疾病传播的影响。

本灵敏度分析旨在探究模型中各参数，如易感者接触感染概率、潜伏者发病率等对传染病传播关键指标，

如感染者数量峰值、传染病持续时间的影响程度，明确哪些参数变动会显著改变传播态势，为防控决策

提供依据结合所给的传染病传播流程图及灵敏度指数柱状图，具体分析如图 2： 
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Figure 2. Sensitivity indices of various parameters to the basic reproduction number 
图 2. 各参数对基本再生数的灵敏度指数 

 
β 的灵敏度指数为 1，表明这个参数对基本再生数 0R 有极强的正向影响，是影响传播的核心因素；

β 值的微小增加意味着易感者有更高的几率被感染，从而显著提升 0R ，加速传染病的传播。η的灵敏度

指数约为 0.514009，说明该参数对 0R 有中度正向影响；η值增加，意味着潜伏者的传染性增强，对疾病

的传播起到一定的促进作用。α 的灵敏度指数为 0.286011，说明其对 0R 的影响较弱，但仍有一定意义；

α 的变化会影响潜伏者向有症状感染者的转化速度，进而对整体传播风险产生影响。σ 的灵敏度指数绝

对值为 0.2，说明其对 0R 的影响较弱，但仍有统计学意义；通过减少潜伏者的数量，阻断其向有症状感染

者 I 或被隔离的潜伏者 EQ 的转化，从而降低整体传播风险。 λ 的灵敏度指数为−0.413551，对 0R 呈现中

度负向影响；λ 值增大，意味着隔离措施执行力度加强，能有效阻断传播途径，从而降低 0R ，抑制疾病

传播。ε 的灵敏度指数为−0.999750，对 0R 有极强的负向影响。加大疫苗接种率，µ 升高，会使有症状感

染者数量减少，传染源减少，进而显著降低 0R 。δ 的灵敏度指数为−0.799920，对 0R 有较强负向影响。

δ 值增大，表明潜伏者被隔离的效率提高，能减少潜伏者在人群中的传播时间，有效降低 0R 。 r 、 1r 、

2r 、 µ 、 1θ 、 1θ 等参数的灵敏度指数接近 0，说明在当前模型设定下，这些参数对基本再生数的影响甚

微，改变其数值，对传染病的整体传播能力几乎无明显作用。 
分析总结 
综上所述，在防控传染病传播时，应重点关注 β 和α ，通过减少人群接触、控制易感人群规模等措

施来降低 0R ；同时，合理提高δ 也能有效抑制疾病的传播。 

6. 数值模拟 

本节介绍了本研究中进行的数值模拟。模拟主要关注疫苗接种和潜伏者进行隔离在人群中的效果。 
数值模拟所用的参数值及其各自来源均列于表 1。 
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Figure 3. Time evolution of (a) susceptible individuals and (b) latent individuals, infected individuals, isolated 
latent individuals, and isolated infected individuals 
图 3. (a)易感者(b)潜伏者、感染者、被隔离的潜伏者、被隔离的感染者随时间演化图像 

 
图 3(a)展示了易感者 S 随时间的变化趋势，可见在传染病传播初期，易感者数量迅速下降，随后趋于

稳定，这反映了疾病传播对易感人群的消耗过程。图 3(b)排除了数量级过大的易感者，更加清晰地展示

了潜伏者 E 、感染者 I 、被隔离的潜伏者 EQ 和被隔离的感染者 IQ 的动态变化规律。模拟结果显示，各人

群演化关系呈现典型的传染病传播特征：潜伏者数量首先达到峰值，随后感染者数量出现高峰，最后隔

离人群数量逐渐增加。这种时序特征与经典传染病传播规律相符，验证了模型的合理性。 
 

 

 
Figure 4. When 0.2δ = , impact of different vaccination rates on (a) latent individuals, (b) infected individuals, (c) isolated 
latent individuals, and (d) pre-symptomatic infectious individuals 
图 4. 当 0.2δ = 时，不同疫苗接种率 ε 对(a)潜伏者(b)感染者(c)被隔离的潜伏者(d)感染潜伏者的影响 
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图 4 模拟了不同疫苗接种率 ε 下各人群的动态变化。结果显示，随着疫苗接种率的提高，易感者转

化为康复者的速度加快，有效降低了感染风险。具体而言，当疫苗接种率从 0.1 提升至 0.6 时，感染者峰

值数量显著降低，传染病爆发规模得到有效控制。 
 

 

 
Figure 5. When 0.4ε = , impact of different latent individual isolation rates on (a) latent individuals, (b) infected individuals, 
(c) isolated latent individuals, and (d) isolated infected individuals 
图 5. 当 0.4ε = 时，不同潜伏者隔离率 δ 对(a)潜伏者(b)感染者(c)被隔离的潜伏者(d)被隔离的感染者的影响 

 
图 5 展示了不同潜伏者隔离率δ 对各人群动态的影响。模拟发现，提高潜伏者隔离率能够有效阻断

传播链，减少潜伏者在人群中的暴露时间。当隔离率从 0.1 提升至 0.6 时，感染者峰值出现时间推迟，且

峰值强度显著降低，表明隔离措施不仅延缓了传染病传播速度，还减小了感染规模。 
 

 
Figure 6. Impact of different latent individual isolation rates [ ]0.1 0.2δ ∈ ，  on infected individuals 

图 6. 不同潜伏者隔离率 [ ]0.1 0.2δ ∈ ， 对感染者的影响 
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图 6 显示，当潜伏者被检测出后的隔离率 0.14δ ≥ 时，感染者曲线从一开始就呈现单调下降趋势。这

一结果清晰地量化了控制传染病的一个关键阈值：将潜伏者被检测出后的隔离率提升至 0.14 以上，是阻

止传染病爆发的有效策略。这在实际中对应于通过研发有效的治疗方法、缩短传染期，可以从根本上防

止大规模传染病的发生。 
 

 
Figure 7. Impact of latent individual isolation rate on the end time of the infectious disease 
图 7. 潜伏者隔离率δ 对传染病结束时间的影响 

 
图 7 的定量分析显示，潜伏者隔离率与传染病结束时间之间存在明显的负相关关系。隔离率每提高

0.1，传染病结束时间平均缩短约 15 天。特别地，当隔离率超过 0.7 时，传染病结束时间的缩短效应更加

显著，这为确定隔离措施的实施强度提供了重要参考。 
数值模拟结果综合表明，疫苗接种和潜伏者隔离是控制传染病传播的两个有效干预手段。疫苗接种

主要通过建立群体免疫屏障降低传播风险，而潜伏者隔离则通过切断传播途径控制传染病扩散。两种措

施协同实施时，能够产生显著的叠加效应。 

7. 结论与展望 

本研究通过构建带有潜伏者隔离仓室的 SEIR 模型，深入分析了隔离措施与疫苗接种对传染病传播

的联合控制效果。理论分析与数值模拟一致表明：基本再生数 0R 可作为决定传染病发展的阈值，当其小

于 1 时，无病平衡点全局渐近稳定；灵敏度分析进一步揭示，疫苗接种率 ε 与潜伏者隔离率δ 是对 0R 影

响最为显著的两个参数，是防控干预的关键杠杆；数值模拟结果验证，提高此二参数值不仅能有效压低

并推迟感染高峰，还能显著缩短传染病周期，若能将潜伏者被检测出后的隔离率提升至特定阈值以上，

甚至可避免传染病的大规模爆发。这些结论与周大勇等[1]关于隔离与疫苗协同作用的研究相互印证，并

给出了更精细的量化关系。 
然而，本模型基于若干理想化假设，虽然在理论上具有一定解释力，但在实际应用中可能存在局限
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性。首先，模型假设疫苗接种后具有完全保护效力且免疫持久，未考虑疫苗有效性随时间衰减或免疫逃

逸现象。若引入疫苗非完全有效或免疫衰减，则基本再生数 0R 的表达式将相应调整。例如，考虑疫苗效

率后，有效接种率对 0R 的抑制效果将减弱， 0R 可能随保护效率下降而升高；若进一步引入免疫衰减， 0R
的阈值条件将更为复杂，可能导致疾病在 0 1R < 时仍持续存在低频传播。这些修正将影响对防控策略有

效性的评估：若疫苗非完全有效或免疫不持久，仅依赖提高接种率可能不足以实现群体免疫，需结合更

高强度的隔离措施或多次加强接种。其次，模型未考虑检测延迟、隔离执行效率差异以及社会行为响应

等现实因素，这些因素可能延缓防控措施起效时间，影响“隔离率阈值”的实际可达性。未来研究可在

本模型基础上引入时滞、随机扰动或行为动力学模块，以更贴合真实世界的决策情景。 
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