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摘  要 

Lambert W函数形式为 ( ) xW x xe= ，是一类特殊函数，x在[−1/e, 0]区间内，W(x)有双值，x在[0, +∞)
区间内，W(x)是单值。利用Lambert W函数，本文对于指数和线性函数的多个组合方程进行求解，并得

出多种组合方程的标准解。 
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Abstract 

The Lambert W function, in the form ( ) xW x xe= , is a special class of functions. W(x) has two values 
in the interval [−1/e, 0], and is single-valued in the interval [0, +∞). Using the Lambert W function, 

 

 

*通讯作者。 

https://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2026.161027
https://doi.org/10.12677/pm.2026.161027
https://www.hanspub.org/


王广福 等 
 

 

DOI: 10.12677/pm.2026.161027 248 理论数学 
 

this paper solves multiple combined equations of exponential and linear functions, and derives 
standard solutions for various combined equations. 
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1. Lambert W 函数 

1758 年，Lambert 兰伯特通过对 x 的 q 次幂进行级数展开，解出了三项式方程 mx q x= + 。后来，他

将该方程数扩展至 x 的给定次幂[1] [2]。在文献[3]中，欧拉将兰伯特方程变换成更对称的形式 

( )x x vxα β α βα β −− = −                                  (1) 

用 x β− 代替 x，设 m α β= 且 ( )q vα β= − 。欧拉版本的兰伯特级数解如下： 

( ) ( )( )

( )( )( )

2 3

4

1 11 2 2
2 6

1 3 2 2 3
24

nx nv n n v n n n v

n n n n v

α β α β α β

α β α β α β

= + + + + + + + + +

+ + + + + + + +
                 (2) 

推导完级数后，欧拉开始研究特殊情况，首先是α β= 。为了理解在原始三项式方程中的含义，我们

将(1.1)除以 ( )α β− ，然后令 β α→ ，得到 

.log x vxα=                                      (3) 

欧拉注意到，如果我们能解方程(1.3)中 1α = 的解，那么我们就能解任意 0α ≠ 的解。为了证明这一

点，将方程(3)乘以α ，将 log xα 化为 log xα ，令 z xα= ，且 u vα= 。我们得到 log z uz= ，它就是 1α = 的

方程(3)。 
为了利用式(2)求解该方程，欧拉首先令 1α β= = ，然后将(2)式重写为 ( )1nx n− 的级数。接下来，他

令 n = 0，得到左边为 log x ，右边为一个级数形式： 
1 2 3 4

2 3 4 52 3 4 5log
2! 3! 4! 5!

x v v v v v= + + + + + .                        (4) 

该级数在 1 ev < 时收敛，定义一个函数 T(v)，称为树函数[4]。它等于 ( )W v− − ，其中 W(z)定义为满

足 

( ) ( )e ,W zW z z=  

( ) e .zW z z=                                       (5) 

这两个函数有许多应用：例如，树木的枚举[4]-[8]；水波高度的计算[9]；以及 Pόlya 和 Szegö 考虑的

问题[10] (问题 III. 209，第 146 页)。Wright 使用 W 的复数分支和更一般的指数多项式的根来求解线性常

系数延迟方程[11]。在[12]中，Fritsch、Shafer 和 Crowley 提出了一种算法，用于对 x > 0 时 W(x)的一个分

支进行固定精度计算。计算机代数系统 Maple 多年来一直对 W 的这个实数值分支提供任意精度实现，并
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且从 Release 2 开始对所有分支都提供任意精度实现[13]。 
将式(5)用函数标准形式写下来，如式(6)所示。 

( ) e ,xW x x=   

( ) ( )e .W xW x x=                                      (5) 

如果 x 为实数，则当 1 e x− ≤ 时， ( )W x 有两个可能的实数值(见图 1)。当满足 ( )1 W x− ≤ 时，我们将

分支记为 ( )0W x ，或者直接记为 ( )W x ，当这样就不会造成混淆时，满足 ( ) 1W x ≤ − 的分支记为 ( )1W x− 。

( )0W x 称为 W 函数的主分支。 
 

 
Figure 1. The two real branches of W(x). ——, W0(x); – – –, W−1(x) 
图 1. W(x)的两个实数分支。——，W0(x)；– – –，W−1(x) 

2. W(x)函数的导数 

( ) ( )e yy W x W y= =  

e yx y=  

两边同时对 x 求导 

( ) d1 e e
d

y y yy
x

= +  

d 1
d e ey y
y
x y
=

+
 

e yx y=  

d 1
d e y
y
x x

∴ =
+

 

( )
d 1
d eW x

y
x x
=

+
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3. 求解方程 25005xx =  
2500ln ln 5xx =  

ln 2500ln 5x x =  
lne ln 2500ln 5x x =  

两边使用 W(x)函数 

( ) ( )lne ln 2500ln 5xW x W=  

( )ln 2500ln 5x W=  

( )2500ln5eWx =  
42500 4 5= ⋅  

( ) ( ) ( )4 4 4 42500ln 5 4 5 ln 5 5 ln 5 ln 5W W W= ⋅ = =  

4ln5 4e 5x = =  
45x =  

通用形式为 
xx c= ，c 为一常数。 

ln lnx x c=  
lne ln lnx x c=  

( ) ( )lne ln lnxW x W c=  

( )ln lnx W c=  

( )lneW cx =  

4. 求解方程5 8 6x x= +   

( )1 8 6 5 xx −= +  

( )8 61 5
8 8

xx −+
=  

3 3
4 41 35 5

8 4
x

x
− − − − ⋅ = − − 

 
 

( ) 33 ln5
441 35 e

8 4

x
x

 − −−  
  − ⋅ = − − 

 
 

( ) 33 ln5
441 35 ln 5 e ln 5

8 4

x
x

 − −−  
  − ⋅ ⋅ = − − ⋅ 

 
 

两边使用 W(x)函数 

( ) 33 ln5
441 35 ln 5 e ln 5

8 4

x
W W x

 − −−  
 

    − ⋅ ⋅ = − − ⋅           
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3
41 35 ln 5 ln 5

8 4
W x

−   − ⋅ ⋅ = − − ⋅       
 

3
41 5 ln 5

8 3
ln 5 4

W
x

− 
− ⋅ ⋅  
  = − −  

3
41 5 ln 5

8 3
ln 5 4

W
x

− 
− ⋅ ⋅  
  + = −  

3
41 5 ln 5

8 3
ln 5 4

W
x

− 
− ⋅ ⋅  
 = − −  

3
441 1 15 ln 5 125 ln 5 0.672685 0.3678

8 8 e
−

− ⋅ ⋅ = − ⋅ ≈ − < − ≈  

说明 W 函数有两个根，分别求解，得 1 0.710139x ≈ −  

2 1.8968x ≈ −  

标准形式为： 
xa kx b= + ，a、b、k 为常数。 

( )1 xkx b a−= +  

1 xbx a
k k

− − = − − 
 

 

1 b k x b kba x a
k k

− − − − = − − 
 

 

ln1 ln e ln
bb x a
kk ba a x a

k k

 − − ⋅−  
  − ⋅ = − − ⋅ 

 
 

ln1 ln e ln
bb x a
kk bW a a W x a

k k

 − − ⋅−  
 

    − ⋅ = − − ⋅    
     

 

1 ln ln
b
k bW a a x a

k k
−   − ⋅ = − − ⋅   

  
 

1 ln

ln

b
kW a a

k
x b

a

− 
− ⋅ 
 − − =  

1 ln

ln

b
kW a a

k
x b

a

− 
− ⋅ 
 = − −  

5. 求解方程 43 e 0xx + =  
4e 3x x= −  
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41 3 e xx −= −  

44 4 e
3

xx −= −  

两边使用 W(x)函数： 

( )44 4 e
3

xW W x −  = − 
 

 

4 4
3

W x  = − 
 

 

1 4
4 3

x W  = −  
 

 

0.1693x = −  

标准形式为： 

e 0axkx + =  

k 和 a 为常数。 

eax kx= −  

1 e axkx −= −  

e axa ax
k

−= −  

两边使用 W(x)函数： 

( )e axaW W ax
k

−  = − 
 

 

( )e axaW W ax
k

−  = − 
 

 

aW ax
k

  = − 
 

 

1 ax W
a k

 = −  
 

 

6. 求解方程 73 e 2xx + =  
7e 2 3x x= −  

( ) 71 2 3 e xx −= −  

77 14 7 e
3 3

xx − = − 
 

 

14 147
3 37 14e 7 e

3 3
x

x
− + = − + 

 
 

两边使用 W(x)函数： 
14 147
3 37 14e 7 e

3 3
x

W W x
− +    = − +          
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14
37 14e 7

3 3
W x
 

= − +  
 

 

14
37 147 e

3 3
x W

 
− = −  

 
 

14
31 7 2e

7 3 3
x W

 
= − +  

 
 

0.08061x ≈  

标准形式为： 

eaxkx b+ =  

k、a 和 b 为常数。 

eax b kx= −  

( )1 e axb kx −= −  

e axa ab ax
k k

− = − 
 

 

e e
ab ab ax
k ka ab ax

k k
− = − 

 
 

两边使用 W(x)函数： 

e e
ab ab ax
k ka abW W ax

k k
−    = −    

    
 

e
ab
ka abW ax

k k
 

= − 
 

 

e
ab
kab aax W

k k
 −

− = +  
 

 

1 e
ab
kb ax W

k a k
 

= −  
 

 

7. 求解方程 3 5e 27xx =  

( )1 33 5 1 3e 27xx =  

5 3e 3xx =  

5 35 5e 3
3 3

xx = ⋅  

5 35 e 5
3

xx =  

两边使用 W(x)函数： 

( )5 35 e 5
3

xW x W  = 
 
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( )5 5
3

x W=  

( )3 5 0.79603
5

x W= ≈  

标准形式为： 

eb axx c=  

( )1 1e
bb ax bx c=  

1eax b bx c=  

1eax b ba ax c
b b

=  

两边使用 W(x)函数： 

1eax b ba aW x W c
b b

   =   
   

 

1 ba ax W c
b b

 =  
 

 

1 bb ax W c
a b

 =  
 

 

8. 结论 

Lambert W 函数形式为 ( ) exW x x= ，利用该函数，可以对各种指数函数与线性函数的组合方程进行

求解。在本论文中，对于几种组合形式的方程进行了求解，证明 Lambert W 函数对于这种组合形式的方

程都可以进行求解，并可以给出解的标准形式。同时由于在[−1/e, 0]定义域内有两个值，所以引用 Lambert 
W 函数求解时，会有两个解存在。当定义域在(−∞, −1/e)，Lambert W 函数无解，因此，如果求解的方程

中 W 函数的定义域在此范围内，整体指数函数与线性函数的组合方程无解。 

基金项目 

季华实验室科研项目(X220011TN220)。 

参考文献 
[1] Lambert, J.H. (1758) Observationes variae in mathes in puram. Acta Helvetica, 3, 128-168.  
[2] Lambert, J.H. (1772) Observations Analytiques. Nouveaux m’Emoires de l’Acad’emie Royale des Sciences et belles-

lettres, 1, 128-168. 
[3] Euler, L. (1921) De serie Lambertina plurimisque eius insignibus proprietatibus. Leonhardi Euleri Opera Omnia, Ser. 1, 

Opera Mathematica, Acta Academiae Scientiarum Imperialis Petropolitanae, 350-369. 
[4] Janson, S., Knuth, D.E., Łuczak, T. and Pittel, B. (1993) The Birth of the Giant Component. Random Structures & 

Algorithms, 4, 233-358. https://doi.org/10.1002/rsa.3240040303 
[5] Borchardt, C.W. (1860) Ueber eine der Interpolation entsprechende darstellung der eliminations-resultante. Journal für 

die Reine und Angewandte Mathematik, 57, 111-121.  
[6] Cayley, A. (1889) A Theorem on Trees. Quarterly Journal of Mathematics, Oxford Series, 23, 376-378.  
[7] Eisenstein, G. (1844) Entwicklung von αα···. Journal für die Reine und Angewandte Mathematik, 28, 49-52.  
[8] Sylvester, J.J. (1857) On the Change of Systems of Independent Variables. Quarterly Journal of Pure and Applied Math-

ematics, 1, 42-56.  

https://doi.org/10.12677/pm.2026.161027
https://doi.org/10.1002/rsa.3240040303


王广福 等 
 

 

DOI: 10.12677/pm.2026.161027 255 理论数学 
 

[9] Skovgaard, O., Jonsson, I.G. and Bertelsen, J.A. (1975) Computation of Wave Heights Due to Refraction and Friction. 
Journal of the Waterways, Harbors and Coastal Engineering Division, 101, 15-32.  
https://doi.org/10.1061/awhcar.0000269 

[10] Pólya, G. and Szegö, G. (1972) Problems and Theorems in Analysis. Springer-Verlag.  
[11] Wright, E.M. (1949) The Linear Difference-Differential Equation with Constant Coefficients. Proceedings of the Royal 

Society of Edinburgh. Section A. Mathematical and Physical Sciences, 62, 387-393.  
https://doi.org/10.1017/s0080454100006804 

[12] Fritsch, F.N., Shafer, R.E. and Crowley, W.P. (1973) Algorithm 443: Solution of the Transcendental Equation We w = 
X. Communications of the ACM, 16, 123-124. https://doi.org/10.1145/361952.361970 

[13] Char, B.W., Geddes, K.O., Gonnet, G.H., Leong, B.L., Monagan, M.B. and Watt, S.M. (1991) The Maple V Language Ref-
erence Manual. Springer-Verlag. 

 

https://doi.org/10.12677/pm.2026.161027
https://doi.org/10.1061/awhcar.0000269
https://doi.org/10.1017/s0080454100006804
https://doi.org/10.1145/361952.361970

	Lambert W函数与指数和线性函数组合方程的求解
	摘  要
	关键词
	Solving Equations Combining Exponential and Linear Functions by Lambert W Function
	Abstract
	Keywords
	1. Lambert W 函数
	2. W(x)函数的导数
	3. 求解方程
	4. 求解方程 
	5. 求解方程
	6. 求解方程
	7. 求解方程
	8. 结论
	基金项目
	参考文献

