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摘  要 

本文研究了一类带外力项的广义半线性抛物方程在抛物型Morrey空间

( )k d
p

M
1 ,

α
α β

α

+
− 中的整体适定性问题。

该 方 程 包 含 分 数 阶 拉 普 拉 斯 算 子 耗 散 项 、 非 局 部 非 线 性 项 及 一 般 外 力 项 ， 其 形 式 为

( ) ( ) ( )k
tu u u u f2 2

α β
+ −∆ = −∆ + ，其中 ( )k 1β α β< < +  (亚临界情形)。该模型具有高度的普适性，通过

参数选取可退化为多个经典物理模型。本文通过Duhamel原理将初值问题转化为等价的积分方程，在线

性项、非线性项及外力项满足充分小范数的条件下，系统建立了各项在所选空间中的关键先验估计。最

终，应用Banach不动点定理，证明了该方程整体温和解在抛物型Morrey空间中的存在性、唯一性及对

初值的连续依赖性。本研究推广了现有经典结果，彰显了抛物型Morrey空间为处理此类兼具非局部结构

与临界增长的非线性发展方程提供了统一而有效的分析工具。 
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Abstract 
This paper investigates the global well-posedness of a class of generalized semilinear parabolic 

equations with external force in parabolic Morrey spaces 
( )k d

p
M 1 ,

α
α β

α

+
− . The equation incorporates 

fractional Laplacian dissipation, nonlocal nonlinear terms, and general external force, given by 

( ) ( ) ( )k
tu u u u f2 2

α β
+ −∆ = −∆ + , where ( )k 1β α β< < + (subcritical case). This model is highly 

universal and can degenerate into multiple classical physical models through parameter selection. 
By means of the Duhamel principle, the initial value problem is reformulated as an equivalent 
integral equation. Under the assumption that the linear, nonlinear, and external force terms possess 
sufficiently small norms, we systematically establish the crucial a priori estimates for each of these 
terms within the selected function space. Finally, the Banach fixed-point theorem is applied to prove 
the existence, uniqueness, and continuous dependence on initial data of the global mild solution in 
parabolic Morrey spaces. This study extends existing classical results and demonstrates that parabolic 
Morrey spaces provide a unified and effective analytical framework for handling such nonlinear 
evolution equations with nonlocal structures and critical growth. 

 
Keywords 
Navier-Stokes Equations, Mild Solution, Critical Space, Parabolic Morrey Space, Scale Invariance 

 
 

Copyright © 2026 by author(s) and Hans Publishers Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/ 

  
 

1. 介绍 

在数学物理与流体力学中，描述不可压缩牛顿流体运动的 Navier-Stokes 方程是公认的核心模型之一，

其一般形式为： 

( )

( ) 0

0,
0,

0, .

tu u u u p
u

u u

−∆ + ⋅∇ +∇ =

∇ ⋅ =
 ⋅ =

                              (1.1) 

该方程解的适定性、正则性等关键问题的研究，高度依赖于泛函空间所提供的分析框架。不同空间

因其范数定义与内在性质的差异，适用于刻画解的不同数学特性。在这一问题的研究历程中，Kato [1]率
先证明了 Navier-Stokes 方程在 ( )3 3L R 空间中的局部适定性，并且，当初始数据在 3L 空间中足够小时，方

程具有全局适定性，这一结果为后续研究奠定了基础。随后，Cannone [2]将研究视角拓展至齐次 Besov 空 

间 ( )
31 3

,
P

pB R
− +

∞
 中，证明了方程在该空间中的局部适定性。在更具一般性的函数空间框架下，Giga 和 

Miyakawa [3]，Kato [4]和 Taylor [5]系统研究了 Navier-Stokes 在 Morrey 空间中的适定性问题。而 Coiculescu
与 Palasek [6]于 2025 年发表的最新研究说明了 1BMO− 空间是具有整体解的最大的小初值适定性的临界空

间。这些工作不仅拓展了方程研究的函数空间范围，也为后续在更广泛空间中的研究提供了理论工具和

方法借鉴。因为如今临界空间理论已发展成为研究一系列问题的基本框架，所以学者们也将其应用于更

广泛的半线性抛物型方程： 
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( ) ( ) ,tu u F uα+ −∆ =                                   (1.2) 

其中 0α > 为实参数，非线性项 ( ) ( ) ( )F u Q D f u= ， ( ) bf u u u= ，这里 ( )Q D 是阶数为 β 的齐次拟微分

算子。此类方程构成了一个普适的分析框架，能够统一描述多种重要物理模型。因此，对此广义模型的

研究不仅能深化对 Navier-Stokes 方程本身的理解，而且也具有显著的理论价值。 
当模型包含非局部高阶非线性项与一般外力项时，传统的 Besov 空间或混合范数空间在分析的统一

性和灵活性上显出局限。因此，寻求一个能够统一处理分数阶耗散、非局部非线性及一般外力项的普适

性分析框架，已成为该领域一个值得深入探索的方向。在此背景下，抛物型 Morrey 空间 ,p qMα 展现出其独

特优势，它不仅能够同时精细地刻画解在时间与空间方向上的正则性，优于传统的混合范数空间，而且

通过参数适配，具备内在的尺度不变性，自然成为各类发展方程的临界空间，更重要的是，该空间内蕴

的调和分析工具为统一处理复杂非线性结构提供了强大而灵活的理论框架。 

基于以上分析，本文将在抛物型 Morrey 空间

( )
1 ,

k d
p

M
α

α β
α

+
− 的框架下，系统研究一类包含分数阶耗散、 

非局部非线性项与外力的广义半线性抛物方程。通过建立该空间中线性项、非线性项及外力项的关键先

验估计，并在初值与外力项范数充分小的条件下运用不动点定理，证明整体温和解的存在唯一性。本研

究不仅旨在推广现有经典结果，更力图彰显抛物型 Morrey 空间在处理复杂非线性演化方程中的强大潜力

与统一价值。 
Diego Chamorro 与 Maxence Mansais 在文献[7]中证明了带外力项的分数阶 Navier-Stokes 方程在三类

临界空间中存在整体温和解。在此基础之上，本文致力于将他们的研究成果，特别是其中抛物型 Morrey
空间的框架，推广至一个更一般的方程。通过引入更一般的非线性项 ( ) ( )2

ku u
β

−∆ ，建立了新的方程模

型。接下来将首先给出本文研究的核心模型。 
本文主要研究的是定义在 ( )3d ≥ 空间中的一类半线性抛物方程。 ( )3d ≥  

( ) ( ) ( ) ( )( )
( )

2 2

0

, 1 ,

0, .

k
tu u u u f k

u u

α β
β α β + −∆ = −∆ + < < +


 ⋅ =

                    (1.3)  

当取 2, 1, 1kα β= = = 时，方程(1.3)可联系到经典的 Navier-Stokes 方程，但此时参数处于临界边界

( )1kα β= + 上。本文的理论结果主要针对严格不等式 ( )1kα β< + 的“亚临界”情形。 
本文所研究的广义模型(1.3)具有高度的包容性，通过特定参数的选取可退化为多个重要经典方程：

当取 0, 0kβ = = 时即退化为描述不可压缩流体运动的分数阶 Navier-Stokes 方程；当 0β = 时非线性项简

化为
ku u ，方程(1.3)转化为具有分数阶耗散和非线性项的反应-扩散方程，可视为 Ginzburg-Landau 方程

在分数阶情形的推广；当取 1, 0kβ α= − = 时在二维情况下与描述大气海洋大尺度流动的分数阶耗散准地

转方程密切相关；而当 2, 0α β= = ，并忽略不可压缩约束时，则简化为数学物理中研究最广泛的半线性

热方程。  
由此可见，本文研究的广义模型(1.3)通过参数 , , kα β 的不同配置，统一并涵盖了一系列从经典流体

力学到现代非线性分析中的核心方程。因此，对此模型进行系统性研究不仅具有理论上的普遍意义，而

且它的结论能为理解诸多特定方程的深刻性质提供新的视角。   
接下来，通过将原方程应用 Duhamel 原理，再利用分数阶热半群将原初值问题转化为等价的积分方

程形式： 

( ) ( )20 0 0
d d

t tk
t t s t su u u u s f s

β

− −
 = ∗ + ∗ −∆ + ∗ 
 ∫ ∫p p p ,                      (1.4) 

其中 tp 是分数阶热核，满足 ( )ˆ e t
t

αξξ −=p ，这里面 ( )1kβ α β< < + ，从而为运用不动点定理证明解的存在
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唯一性奠定基础。 
本文主要在抛物型 Morrey 空间中研究，下面将介绍该空间。 
抛物型 Morrey 空间定义：对于一个局部可积函数 [ ): 0, d dR Rϕ +∞ × → ，有 [ )( ), 0,p q dM Rαϕ ∈ +∞ × ，

且1 p q≤ ≤ < +∞。它的范数定义如下： 

( ) [ ) ( )
( ),

1

1

1 10 , 0,

1sup sup , d d .p q
d

p

p

M
r dt x R p q

t s r x y r

s y y s

r
α

α
α

ϕ ϕ
 

> + − ∈ +∞ ×
  − < + − <

 
 

= < +∞ 
 
 

∫∫             (1.5) 

接下来需要选取合适的解空间X 、初值空间 0X 和外力空间 Y ，在抛物型 Morrey 空间 ,p qMα 中进一步

研究该方程在尺度变换下的不变性。 

令 ( ) ( ), ,mu t x u t xα
λ λ λ λ= ， ( ) ( ), ,nf t x u t xα

λ λ λ λ= ，将其带入方程(1.3)，则对于所有 0λ > ，尺度变

换后解得 m
k

α β−
= 。此外

( )1 k
n

k
α β+ −

= 。 

故  

( ) ( ), ,ku t x u t x
α β

α
λ λ λ λ

−

= ，                             (1.6) 

( )
( )

( )
1

, ,
k
kf t x u t x

α β
α

λ λ λ λ
+ −

= 。                            (1.7) 

因此，若解空间 ( ), ⋅
X

X  和外力空间 ( ), ⋅
Y

Y 平移不变，且对于所有 0λ > ，在空间中的范数满足等

式： 

u uλ =
XX
，                                  (1.8)  

和 

f fλ =
YY
。                                  (1.9)   

类似地，若初始数据空间 ( )
00 , ⋅

X
X 满足：对所有 0λ > ，令 ( ) ( )0 0

ku x u x
λ

α β

λ λ
−

= 时，满足： 

00
0 0u u
λ

=
XX
。                                (1.10) 

则抛物型 Morrey 空间 ,p qMα 被称为方程(1.3)的临界空间。 
为使空间 ,p qMα 成为方程(1.3)的临界空间，指标 p和 q 不能任意选取，而必须由方程的参数 , , ,k dα β

决定。通过直接计算尺度变换下范数的齐次性，可确定临界关系为： 

( )k d
q

α
α β

+
=

−
， 

此时，空间 ,p qMα 的范数在变换 u uλ→ 下是尺度不变的。指标令 1p p= ，则 1p 需满足一定的可积性条 

件，通常取为 11 kk p α
α β

+ < <
−

，以确保后续估计的有效性。 

基于上述分析，本文选取如下特定的

( )

[ )( )1 ,
0,

k d
p

dM R
α

α β
α

+
− +∞ × 空间作为求解方程(1.3)的工作空间。 

取

( )

[ )( )1 ,
0,

k d
p

dM R
α

α β
αϕ

+
−∈ +∞ × ，其范数定义为： 
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( )

( ) [ ) ( ) ( )

( )
1

1,1

1
1

1

10 , 0,

1sup sup , d dk d
p

d

p

p

M
r dt x R

p k d t s r x y r

s y y s

r

α
α β

α

α

α βα
α

ϕ ϕ+
−  −> + −∈ +∞ ×  

+   − < + − <

 
 

=  
 
 

∫∫ ，         (1.11)  

其中 11 kk p α
α β

+ < <
−

，该参数范围的确立，源于在后续证明中分别对线性项(初值)和非线性项进行先验 

估计时，为满足不等式成立而必须满足的积分收敛性与算子有界性条件。 

本文所考虑的解空间是上述抛物型Morrey空间

( )
1 ,

k d
p

M
α

α β
α

+
− 中满足初始条件 ( ) 00

lim , 0
Yt

u t u
→

⋅ − = 的闭子

空间，其中
( )

,
kB

α β−
−

∞ ∞
 是一个合适的初始数据空间。这确保了温和解在 0t = 时刻的连续性。 

接下来将选取解空间

( )
1 ,

k d
p

M
α

α β
α

+
− 、初值空间

( )

,
kB

α β−
−

∞ ∞
 和外力空间 ,w γ−



p,q ，在抛物型 Morrey 空间

( )

[ )( )1 ,
0,

k d
p

dM R
α

α β
α

+
− +∞ × 中满足以下三类估计： 

1) 初始数据项 0u 估计：
( ) ( ),1

,0 0
k d

p
ks M Bu C uα α β

α β
α

+ −
−−
∞ ∞

∗ ≤


p ，                                 (1.12) 

2) 非线性项估计： ( ) ( ) ( )
( )( ),1

,1

1
2 d k d

p
k d

p

kt k
t s Mo

M

u u s C u α
α α β

α
α β

α

β
+

+ −
−

+

−
 ∗ −∆ ≤ 
 ∫ p ，                 (1.13) 

3) 外力项 f 估计： ( ) , ,,10
d k d

p

t
t s wM

f s C fα
γ

α β
α

+
−

−− ∗ ≤∫


p qp 。                                  (1.14) 

本文主要研究抛物型 Morrey 空间

( )

[ )( )1 ,
0,

k d
p

dM R
α

α β
α

+
− +∞ × 中一类半线性抛物方程的整体适定性，现已

建立线性、非线性及外力项的关键先验估计，接下来将给出核心定理 1，证明解的存在唯一性。 

定理 1：对于 ( )1kβ α β< < + ，给定正则性指标，设 0 : d du R R→ 满足
( )

( )0 ,
dku B R

α β−
−

∞ ∞∈  。考虑实参数

11 kk p α
α β

+ < <
−

，并且定义实指标 0γ > ，使得
( ) ( ) 11k p

k
α β α β

γ α
+ − − −

< < 。 

设 [ ): 0, d df R R+∞ × → 为外力，满足 [ )( ), 0, df w Rγ−∈ +∞ ×

p,q ，其中
( )

( )
1 1

1
p

k k
α β
α β γ
−

= >
+ − −

p ，并且

( )
( )1

k d
k k

α
α β γ
+

=
+ − −

q 。基于 Morrey 空间的 Sobolev 空间 [ )( ), 0, dw Rγ− +∞ ×

p,q 由引理 1 定义。 

若 ( )
,

,0 k wBu fα β
γ

−
− −
∞ ∞

+




p,q 的 取 值 足 够 小 ， 则 分 数 阶 积 分 问 题 (1.4) 存 在 全 局 温 和 解 u ， 且

( )

[ )( )1 ,
0,

k d
p

du M R
α

α β
α

+
−∈ +∞ × 。 

2. 预备知识  

引理 1：Sobolev 空间范数 
对于某个参数 0γ > ，基于Morrey空间的 Sobolev空间 [ )( ), 0, dw Rγ− +∞ ×

p,q  ，取 [ )( ), 0, dw Rγϕ −∈ +∞ ×

p,q

其由以下条件定义： 

( ) 2
, ,

,p qw
M

γ

γ

α

ϕ ϕ−
−= −∆ < +∞



p q 。                          (2.1) 

引理 2：初始数据的 Besov 空间刻画 
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tp 为满足该参数的分数阶热核，且表达式为 ( )ˆ e t
t

αξξ −=p ，对于任意函数 ( ),
s dB Rϕ −

∞ ∞∈  ，可通过如下

条件等价刻画： 

( ),
0

sup
s

s d
t L

t
B R tαϕ ϕ ∞

−
∞ ∞

>
∈ ⇔ ∗ < +∞ p 。                        (2.2) 

引理 3：分数阶热核的逐点估计 

对于分数阶热核 ( )t xp 或热半群 ( ) 2
e t

α

− −∆
，存在常数 0C > ，使得对某类算子 ( )G D (例如分数阶导数

( ) 2
β

−∆ )有： 

( )( ) ( ) ( ) ( )2

1
e dd

t s
dR

f y
G D f x C y

t s x y

α

γ

α

− − −∆
+≤

 − + − 
 

∫ ，                 (2.3) 

这里的指数 γ 与算子 ( )G D 的阶数有关。具体可参考(文献[8]引理 1)。 
引理 4：抛物型 Riesz 势的估计 
1) Riesz 势 sI 的定义 
对于一个函数 : d dR R Rϕ × → ，其抛物型 Riesz 势 sI 定义为： 

( )( ) ( )
1

1, , d dds d sR R
I t x s y y s

t s x y
α

α

ϕ ϕ+ −=
 − + − 
 

∫ ∫ ，                 (2.4) 

其中 0 s d α< < + 。 
2) Riesz 势的有界性估计 

若
( )

11
k dks p

αα β
α β α β

++ −
< < ≤

− −
，则成立以下有界性估计： 

( ) ( )
,1 ,
k d

p
s MM

I Cα
α β

αα
ϕ ϕ+

− ≤ p q ，                            (2.5) 

其中
( ) 1p
ks
α β

α β
−
+ −

p= ，
( )k d

ks
α

α β
+

=
+ −

q ，相关内容可参考(文献[9]定理 5.1)。 

引理 5：抛物型 Morrey 空间中的 Hölder 不等式 
对于函数 ,, p qf g Mα∈ ，成立如下不等式 

, ,, 1 1 2 2p q p qp qM M Mf g f g
α α α

⋅ ≤ ，                           (2.6) 

其中指数满足：1 p q< ≤ < +∞，且
1 2

1 1 1
p p p
= + ，以及

1 2

1 1 1
q q q
= +  

引理 6：Banach 不动点定理 
设 X 是一个 Banach 空间，设 :B X X X X× × × → 是一个 m-线性连续算子，满足 

( )1 2
1

, , ,
m

m jX X
j

B u u u K u
=

≤ ∏ 对所有的 1 2, , , mu u u X∈ ，                 (2.7) 

其中常数 0K > 。设 0R > 满足 ( ) 12 1mm R K− < 。那么，对于每一个 y X∈ 且满足
Xy R≤ 的方程 

( ), , ,u y B u u u= + 
。                                (2.8) 
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在 X 中存在唯一的解 u ，且该解满足 2Xu R≤ 以及
1X X

mu y
m

≤
−

。此外，解 u 连续依赖于 y ，其 

意义如下：如果
Xz R≤ 且 ( ), , ,v z B v v v= + 

， 2Xv R≤ ，那么 

( ) 1
1

1 2 mX Xu v y z
m R K−− ≤ −

−
。                           (2.9) 

3. 定理证明  

本文选取抛物型 Morrey 空间

( )

[ )( )1 ,
0,

k d
p

dM R
α

α β
α

+
− +∞ × 作为求解空间，范数由式(1.11)定义。证明(1.12)、 

(1.13)、(1.14)三类估计。我们将分别分析这三类项，但在此之前，先通过下述命题证明：抛物型 Morrey 

空间

( )

[ )( )1 ,
0,

k d
p

dM R
α

α β
α

+
− +∞ × 包含求解空间 [ )( ), , 0, d

kL Rα β
∞ +∞ × 。 

, ,kLα β
∞

空间范数定义为： ( )
, , 0

sup ,
k

k
L Ls

s s
α β

α β
αϕ ϕ∞ ∞

−

>
= ⋅ 。 

命题 1：当 11 kk p α
α β

+ < <
−

时，空间 [ )( )
( )

[ )( )1 ,

, , 0, 0,
k d

p
d d

kL R M R
α

α β
α β α

+
∞ −+∞ × ⊂ +∞ × 。 

证明：任取函数 [ ): 0, d dR Rϕ +∞ × →  ，需证明估计：
( )

,1
, ,

k d
p

kM LCα
α β

α α β
ϕ ϕ+

∞− ≤ 。 

( )
1 ,

k d
p

M
α

α β
α

+
− 空间范数定义为：

( )

( ) [ ) ( ) ( )

( )
1

1,1

1
1

1

10 , 0,

1sup sup , d dk d
p

d

p

p

M
r dt x R

p k d t s r x y r

s y y s

r

α
α β

α

α

α βα
α

ϕ ϕ+
−  −> + −∈ +∞ ×  

+   − < + − <

 
 

=  
 
 

∫∫ 。 

, ,kLα β
∞

空间的范数定义为： ( )
, , 0

sup ,
k

k
L Ls

s s
α β

α β
αϕ ϕ∞ ∞

−

>
= ⋅ 。 

因此 

( )

( ) [ ) ( ) ( )

( )

( )
( ) [ ) ( ) ( )

1

1 1 1,1

1
1

1

1
1

1

10 , 0,

10 0 , 0,

1sup sup , d d

1sup , sup sup d d

k d
p

d

d

p

p p p
k k

M
r dt x R

p k d t s r x y r

pk k
Ls r dt x R

p k d t s r x

s y s s y s

r

s s s y s

r

α
α β

α

α

α

α β α β
α α

α βα
α

α β α β
α α

α βα
α

ϕ ϕ

ϕ

+
−

∞

− −
−

 −> + −∈ +∞ ×  
+   − < + − <

− −
−

 −> > + −∈ +∞ ×  
+   − < + −

 
 

=  
 
 

≤ ⋅ ×

∫∫

( ) [ ) ( ) ( )

1

1

1

, , 1
1

1

1

10 , 0,

1sup sup d d .
dk

p

y r

p

p
k

L
r dt x R

p k d t s r x y r

s y s

r
α β

α

α β
α

α βα
α

ϕ ∞

<

−
−

 −> + −∈ +∞ ×  
+   − < + − <

 
 
 
 
 

 
 

= ×  
 
 

∫∫

∫∫

 

接下来只需要分析上式中积分项的有界性。 

由于集合
1

t s x y rα
 − + − < 
 

包含于{ } { }0 : :ds t s r y R x y rα> − < × ∈ − < ，令 

1

1

d dp
k

t s r x y r

I s y s
α

α β
α
−

−

− < + − <

= ∫∫ 。 
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再结合 { }:
dd

d
y R x y r

y Cr
∈ − <

=∫ ，则有 

{ } { }

{ }

1

1

1

0: :

0:

d d

d

d .

d

p
k

s t s r y R x y r

pd k

s t s r

t r pd k
t r

I s y s

Cr s s

Cr s s

α

α

α

α

α β
α

α β
α

α β
α

−
−

> − < × ∈ − <

−
−

> − <

−+ −

−

≤

≤

=

∫∫

∫

∫

 

下面分两种情况讨论积分 I ： 
① 当 0 2t rα≤ ≤ 时， ,3s r rα α ∈ − ，则 

1 1 13 3 3

3 0
d d d

r r rp p pd d dk k k
r r

I Cr s s Cr s s Cr s s
α α α

α α

α β α β α β
α α α
− − −

− − −

− −
≤ ≤ =∫ ∫ ∫ ， 

由于 11 kp α
α β

≤ <
−

，故 1 1p
k k

α β α β
α α
− −

≤ < ，则 1 1p
k

α β
α
−

− > − ，因此积分 13

0
d

r p
ks s

α α β
α
−

−
∫ 收敛，得到 

( ) ( )11
1d pp k dd kI Cr r Cr

α βα β αα α
 −− + − − +  ≤ = 。 

② 当 2t rα≥ 时，则有 2t r r r rα α α α− > − = ，故 0t r t r rα α α+ > − > > ，因此 0 r t r s t rα α α< < − ≤ ≤ +  

成立，故 s rα≥ ，且 1 0p
k

α β
α
−

− < ，则 

( ) ( )1111
1

d d
d pd ppt r t rp k dd d kkk

t r t r
I Cr s s Cr r s Cr Cr

α α

α α

α βα βα β αα β α αα αα

 −−− + −−  + −−+ +− +  
− −

= ≤ = =∫ ∫ 。 

综上所述：
( ) ( )11d p

k dI Cr
α βα

α
 −

+ − 
+  ≤ ，因此 

( )

( ) [ ) ( ) ( )

( ) [ ) ( ) ( )

( ) ( )

1

1,1
, , 1

1

1

, ,

1

, ,

1

10 , 0,

1

10 , 0,

1sup sup d d

1sup sup

.

k d
p

dk

dk

k

p

p
k

M L
r dt x R

p k d
t s x y r

d
p k d

L
r dt x R

p k d

L

s y s

r

C r

r
C

α
α β

α α β

α

α β

α β

α β
α

α βα
α

α βα
α

α βα
α

ϕ ϕ

ϕ

ϕ

+
∞−

∞

∞

−
−

 −> + −∈ +∞ ×  
+   − + − <

 −
+ − 

+  
 −> + −∈ +∞ ×  

+  

 
 

≤ ×  
  
 

≤ ×

≤

∫∫

 

故

( )
1,

, ,

k d
p

kL M
α

α β
α β α

+
∞ −⊂ ，命题得证。 

定理 1 的证明：条件 11 kp α
α β

≤ <
−

是保证上述积分 I 收敛的关键。由于已经证明完抛物型 Morrey 空

间

( )

[ )( )1 ,
0,

k d
p

dM R
α

α β
α

+
− +∞ ×   包含 [ )( ), , 0, d

kL Rα β
∞ +∞ × ，接下来分别证明三个估计。 

1) 初始数据项估计 

根据抛物型 Morrey 空间

( )
1 ,

k d
p

M
α

α β
α

+
− 的范数定义得： 

https://doi.org/10.12677/pm.2026.161022


刘爱博，何颖 
 

 

DOI: 10.12677/pm.2026.161022 200 理论数学 
 

( )

( ) [ ) ( ) ( )

( )
1

1,1

1
1

1

0 010 , 0,

1sup sup d dk d
p

d

p

p
t sM

r dt x R
p k d

t s x y r

u u y y s

r

α
α β

α

α

α βα
α

+
−  −> + −∈ +∞ ×  

+   − + − <

 
 

∗ = ∗ 
  
 

∫∫p p 。 

因此 

( )

( ) [ ) ( ) ( )

( ) [ ) ( ) ( )

1

1,1

1
1

1

, , 1
1

1

0 0 10 0 , 0,

0 10 , 0,

1sup sup sup d d

1sup sup d d

k d
p

d

dk

p

pk kt sM L
s r dt x R

p k d
t s x y r

p
ks L

r dt x R
p k d

t s

u s u s y s

r

u s y s

r

α
α β

α

α

α β
α

α β α β
α α

α βα
α

α β
α

α βα
α

+
∞−

∞

− −
−

 −> > + −∈ +∞ ×  
+   − + − <

−
−

 −> + −∈ +∞ ×  
+   − +

 
 

∗ ≤ ∗ ×  
  
 

= ∗ ×

∫∫p p

p

( ) [ ) ( ) ( )

( ) ( )

1

1

, ,
1

, ,

1

1

0 10 , 0,

0

1sup sup

.

dk

k

p

x y r

d
p k d

s L
r dt x R

p k d

s L

C u r

r
C u

α β

α β

α βα
α

α βα
α

∞

∞

− <

 −
+ − 

+  
 −> + −∈ +∞ ×  

+  

 
 
 
  
 

≤ ∗ ×

≤ ∗

∫∫

p

p

 
根据引理 2 可以得到 ( )

,0 0
0

sup k
k

s L B
s

s u u α β
α β
α −

−
∞ ∞ ∞

−

>
∗



p ，再结合命题 1 中积分项的计算结果，可以直接

得到
( ) ( ),1

,0 0
k d

p
kt M Bu C uα α β

α β
α

+ −
−−
∞ ∞

∗ ≤


p ，故(1.12)证毕。 

2) 非线性项估计 

根据抛物型 Morrey 空间

( )
1 ,

k d
p

M
α

α β
α

+
− 的范数定义得到： 

( ) ( ) ( )

( ) [ ) ( ) ( )

( ) ( )

,1

1
1

1
1

2

1

2
10 , 0,

d

1sup sup d d d .

k d
p

d

k
so

M

p
p

k
sor dt x R

p k d
t s x y r

u u s

u u s y

r

α
α β

α

α

βτ
τ

βτ
τα βα

α

τ

+
−

−

− −> + −∈ +∞ ×  
+   − + − <

 ∗ −∆ 
 

 
  = × ∗ −∆  

   
 

∫

∫∫ ∫

p

p

 

由引理 3 的分数阶热核逐点估计可得： ( ) ( ) ( ) 1

2
1

,
dd

k
k

s dR

u s z
u u C z

s y z

β

τ β

ατ

+

− +
 ∗ −∆ ≤ 
   − + − 

 

∫p 。 

故 

( ) ( ) ( )

( ) [ ) ( ) ( )

( )

,1

1 1

1
1

2

1

1

1 10 , 0,

d

,1sup sup d d d d

k d
p

d
d

k
so

M

p p

k

do Rr dt x R
p k d

t s x y r

u u s

u s z
C z s y

s y zr

α
α β

α

α

βτ
τ

τ

βα βα
α α

τ

τ

+
−

−

+

+ −> + −∈ +∞ ×  
+   − + − <

 ∗ −∆ 
 

    
  ≤ ×     − + −      

∫

∫∫ ∫ ∫

p
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( ) [ ) ( ) ( )

( )

1 1

1
1

1

1

1 10 , 0,

,1sup sup d d d d .d
d

p p

k

dRr dt x R
p k d

t s x y r

u s z
C z s y

s y zr α

βα βα
α α

τ

τ

+
+∞

+  −∞−> + −∈ +∞ ×  
+   − + − <

    
  ≤ ×     − + −      

∫∫ ∫ ∫   

再由引理 4 中抛物型 Riesz 的定义，上式可以进一步简化为： 

( ) ( ) ( )

( ) [ ) ( ) ( )

( )( )( )

( ) ( )

,1

1

1

1
1

,1

2

1

1

10 , 0,

1

d

1sup sup , d d

.

k d
p

d

k d
p

k
so

M

p
pk

r dt x R
p k d

t s x y r

k

M

u u s

C I u s y y s

r

C I u

α
α β

α

α

α
α β

α

βτ
τ

α βα βα
α

α β

+
−

+
−

−

+

− −> + −∈ +∞ ×  
+   − + − <

+
−

 ∗ −∆ 
 

 
 

≤ × 
  
 

≤

∫

∫∫

p

 

根据抛物型 Riesz 势 1Iα− 在 Morrey 空间中的有界性，且
( )

11
k d

k p
α

α β
+

+ < <
−

可以推出： 

( ) ( ) ( ) ( ) ( )

( ) ( )
( )( )

,1,1

1 ,
1 1

1
2

1

d

,

k d
pk d

p

k dp
k k

k k
so MM

k

M

u u s C I u

C u

α
α

α β
α β α

α

α
α β

α

βτ
τ α β

+
+

−
−

+
+ + −

+
− −

+

 ∗ −∆ ≤ 
 

≤

∫ p
 

上式结合引理 5 的 Morrey 空间中的 Hölder 不等式可得： 

( ) ( ) ( )
( )( ),1

,1

1
2 d .k d

p
k d

p

kk
s Mo

M

u u s C u α
α α β

α
α β

α

βτ
τ

+
+ −
−

+

−
 ∗ −∆ ≤ 
 ∫ p  

即证得(1.13)非线性项估计。 
3) 外力项估计 
根据抛物型 Morrey 空间的范数定义： 

( )

( ) [ ) ( ) ( )

,1

1

1

1
1

1

10 , 0,

d

1sup sup d d d .

k d
p

d

so M

p
p

sor dt x R
p k d

t s x y r

f s

f s y

r

α
α β

α

α

τ
τ

τ
τα βα

α

τ

+
−−

− −> + −∈ +∞ ×  
+   − + − <

∗

 
 

= × ∗ 
  
 

∫

∫∫ ∫

p

p

 

对于任意的 0 γ α< < ，引入分数阶拉普拉斯算子分解，于是： 

( )

( ) [ ) ( ) ( )

( ) ( )

,1

1
1

1
1

1

2 2
10 , 0,

d

1sup sup d d d .

k d
p

d

so M

p
p

sor dt x R
p k d

t s x y r

f s

f s y

r

α
α β

α

α

τ
τ

γ γτ
τα βα

α

τ

+
−−

−
− −> + −∈ +∞ ×  

+   − + − <

∗

 
  = × ∗ −∆ −∆  

   
 

∫

∫∫ ∫

p

p
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利用引理 3 核函数的逐点估计，其中 : d dR Rϕ → 为适当函数。 

( ) ( )( ) ( )
2

1
d .ds dR

y
x C y

s x y

γ

τ γ

ατ

ϕ
ϕ− +∗ −∆ ≤

 − + − 
 

∫p  

由此推出： 

( ),1d k d
pso M

f s α
α β

α

τ
τ

+
−− ∗∫ p  

( ) [ ) ( ) ( )

( ) ( )
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∫∫ ∫ ∫   

再根据引理 4 中抛物型 Riesz 势 Iα γ− 的定义，上式简化为： 
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∫∫
  

接下来利用抛物型 Riesz 势在 Morrey 空间中的有界性估计，可得： 

( ) ( ) ( )
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2 2 , .k d
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MM
wI f C f C fα

α β αα

γ γ

γα γ +
−

− −
−−
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

p,q
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故 ( ) ,,1d k d
ps wo M

f s C fα
γ

α β
α

τ
τ

+
−

−− ∗ ≤∫


p,qp ，其中
( )

( )
1

1
p

k k
α β
α β γ
−

=
+ − −

p ，
( )

( )1
k d

k k
α

α β γ
+

=
+ − −

q 。故(1.14)得证。 

综上，本文已证明完(1.12)、(1.13)、(1.14)的估计。 
4) 不动点论证 

本文通过将原方程转化为积分形式，并基于在临界抛物型 Morrey 空间

( )
1,

k d
p

M
α

α β
α

+
− 中建立的线性项、 

非线性项及外力项的关键先验估计，最终应用引理 6 的 Banach 不动点定理，严格证明了当初值与外力范

数充分小时，整体温和解在所述抛物型 Morrey 空间中的存在性、唯一性及对初值的连续依赖性。详细证

明过程可参考(文献[10]中引理 4.2)。 
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