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Abstract

This study employed Nevanlinna theory to examine finite-order meromorphic solutions of
nonlinear differential equations with the form

f+af" "+ P (2, f)=p, (z)e”‘(z) +p, (z)e“Z(z) + Py (z)e'“(z) Where P,(z,f) is polynomial of

degree d, p,(i=1,2,3) are non-zero constants, and «,(z)(i=1,2,3) are distinct non-constant
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polynomials. Corresponding examples are provided for illustration.
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f"(2)+ 0, (2, f) = pe™ + p,e™ )
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(i) f(2)=c,+ce™ "

(i) f(z)=c,+c,e";

(i) f(z)=ce™" +c,e, Ha+a,=0, Hic A f(z) WARE, ¢ BB Hil L
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a a a X b

21 2 2 2 )
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anl anZ ann xn bn

(X%, X, ) = {det(( ) det(4) det(An)J

det(A) det(4) ™ det(4) )
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(1) Tf,(:)e7 =0
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f(z) =az" +a,,z"" +(/H§EP a, * O)
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BBTTREGH —MLE f(2) WL N(r, f)=S(r, f), &
h(z)=f"+af" "+ P,(zf)
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b D Ps
D, (Z) =det 4 (Z) = Py Do) P
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eal(z) — Dl (Z) 7
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(€))
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D{(Z)Do(z)_Dl(Z)D(;(Z)zaf(z)Dl(Z)Do(z)' (10)
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Al(z)h—i-A2 (z)h'+A3(z)h"+A4(z)h'"=0 (11)
Soh FH A, () HET
AI(Z)ZMI'IDO—MH(D(;+a1'D0),
Az( )_(Mll_Mél)D +M21(D'+a1’D)
A3( ) ( M21+M31)D M}l(D,+al'D0)
4,(z)=M,D,.

Rl 4, (z) =M, (2) Dy (2) #0

A4 h(z)= £ +af 21"+ P, (2, f) A DR B
A(f +af Y (v A (1 a7 ) = 0(2) (12)

Forp O(2) = (AP, + AP+ AP+ APY) H.0(z) UKL d Mo 20, 9 T Ritk(2) %0,
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(fn +afn—2f”)m
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m(r,R)=0(logr)
ST £ (z) SRR, ERRATE
T(r,R)zm(r,R)+N(r,R)=0(10gr),

BB R(2) e MRS, B FAKE 5 DL R R TS

B 1.1 WRR(z)20

M4 7 (fR(2))=0(z) FFXRIF 51 2.1 13 m(r, fR(2)) = O(logr) » FIFE R FAHMR, &
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Hrh g NAHEEE, 45i6022)53:
g'e” +aq"? (q"+2q'p"+qp"+q(p') )" +Zﬁ (z)e"™ Zp, (24)

I 23 13, ¢, G e LR, BRARSRBUR L), R ERE iy, R4S
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nP(z):n,Bz+cl+C1,P(z):ﬂz+;/, (29)
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¥ P(z)=Pz+y WNRTTREIS G Q) ILACTRE, LR AT

q(z)' =p,e " aq(z)"(d'(2)+a(2)B)=p, e B,(2)=p,e (30)
T q(2) HEL Hq(z) BRHEL idq(z)=C AREHE), Mq(z) =0, MR, T
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