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摘  要 

应用亚纯函数的 Nevanlinna 值分布理论，研究一类非线性微分方程 
( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 32

1 2 3, e e ea z a z a zn n
df af P z f p z p z p zf−+ + =′′ + + 的超越亚纯解，其中 ( )dP z f, 为 f 的 d 次

微分多项式， ( )ip i 1,2,3= 为非零常数， ( ) ( )ia z i 1,2,3= 为互异的非常数多项式，而且给出了相应的例

子辅以说明。  
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Abstract 
This study employed Nevanlinna theory to examine finite-order meromorphic solutions of 
nonlinear differential equations with the form  

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 32
1 2 3, e e ea z a z a zn n

df af P z f p z p z p zf−+ + =′′ + +  Where ( )dP z f,  is polynomial of 
degree d , ( )ip i 1,2,3=  are non-zero constants, and ( ) ( )ia z i 1,2,3=  are distinct non-constant 
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polynomials. Corresponding examples are provided for illustration. 
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1. 引言与主要结果 

本文使用 Nevanlinna 值分布理论的基本结果和标准记号[1] [2]。现对文中使用的主要符号做出如下 

说明：设 f 是整个复平面C 上的亚纯函数， f 的级表示为 ( ) ( )log ,
lim

logr

T r f
f

r
ρ

+

→∞
= ；对于 a C∈ ，对于一 

个不恒为零的亚纯函数 ( )zα ，若满足 ( ) ( ), ,T r S r fα = ，(这里 ( ) ( )( ), ,S r f o T r f= ( )r →∞ ，除去关于 r
的一个可能存在的有限例外集)则称 ( )zα 为 ( )f z 的小函数。用 ( ),dP z f 表示 ( )f z 的 d 次微分多项式

( ),dP z f 为： 

( ) ( ) ( )( )1

0
, ,

i
n

i
d

i
P z f a f z

λ

λ
λ∈Λ =

= ∑ ∏                               (1) 

其中 aλ 为 f 小函数，Λ是非负整数的有限指标集，且 ( )0 1 2 1, , , , nλ λ λ λ λ=  和 

( )( )
1

0
: deg , max

n

d i
i

d P z f λ λ∈Λ
=

 
= =  

 
∑ 。 

如今，复微分方程在许多学科中发挥重要作用，非线性微分方程的整函数解(亚纯解)的存在性与唯一

性的探讨与分类具有理论意义，大量学者运用 Nevanlinna 值分布理论，广泛研究一系列的微分方程(参见

文献[3]-[8])，以下仅列举部分成果。 
2011 年，李平[3]仅得到如下结果 
定理 1.1 设 2n ≥ 为整数， 1p ， 2p ， 1α ， 2α 为非零常数且满足 1 2α α≠ ， ( ),dQ z f 为 ( )f z 的微分多

项式，次数至多为 2n − 次。若 f 是方程 

( ) ( ) 1 2
1 2, e ez zn

df z Q z f p pα α+ = +                               (2) 

的超越亚纯解，且满足 ( ) ( ), ,N r f S r f= ，则以下三种情况之一成立： 
(i) ( ) 1

0 1e
z nf z c c α= + ； 

(ii) ( ) 2
0 2e

z nf z c c α= + ； 
(iii) ( ) 1 2

1 2e ez n z nf z c cα α= + ，且 1 2 0a a+ = ，其中 0c 为 ( )f z 的小函数， jc 为常数并且满足

, 1, 2n
j jc p j= = 。 

2020 年刘慧芳和毛志强[6]对减弱定理 1.1 中的限制条件 2d n≤ − ，并证明了如下定理。 
定理 1.2 设 2n ≥ 为正整数， ( ),dP z f 为关于 f 的次数不超过 1d n≤ − 的微分多项式，系数为多项式， 

( ), 1, 2j jp a j = 为非零常数且满足 1

2

, :1a t n t n
a n t

 ∈ ≤ ≤ 
 

。若 ( )f z 是方程(1.2)的亚纯解并满足 

( ) ( ), ,N r f S r f= ，则以下两种情形之一成立： 
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(i) ( ) ( )
1

1
1 1

2

e ,
z

n nf z z c
t

α αγ
α

= + = ，

 (ii) ( ) ( )
2

1
2 2

2

e ,
z

n tf z z c
n

α αγ
α

= + = ，其中 ( )j zγ 是 ( )f z 的小函数， jc 为常数并且满足 , 1, 2n
j jc p j= = 。 

2023 年陈敏风[8]研究了方程(2)右边包含三项线性无关的指数函数，并得到定理 1.3 
定理 1.3 设 3n ≥ 为正整数， ( ),dP z f 为关于 f 的次数不超过 1d n≤ − 的微分多项式，系数为小函数，

( ), 1, 2,3jp j = 为非零常数，且 ( ), 1, 2,3ja j = 为互异的非零常数，如果 f 为方程 

( ) ( ) 31 2
1 2 3, e e e zz zn

df z P z f p p p αα α+ = + +                        (3) 

的有限级亚纯解，并且满足 ( ) ( ), ,N r f S r f= 则以下两种情况成立： 
(1) ( ) e zf z βγ= 其中 γ β， 为非零常数，且满足 1

n pγ =  (或 2p 或 3p ) 1n aβ = ( 2a 或 3a ) 
而且必有 ( ),0 0dp z ≡ 并存在正整数 1 2 3, ,l l l 满足 { } { }1 2 3, , 1, 2,3l l l = 以及互异的正整数 1 2,k k 满足

1 21 ,k k d≤ ≤ ，使得
1 2 3 1 2: : : :l l la a a n k k= 。 

(2) ( ) ( )1, 3 , ,T r f N r S r f
f

 
≤ + 

 
。 

通过观察定理 1.3，因此本文考虑到用 ( )2 ,n
dfaf p z f− +′′ 取代将方程(3)中的 ( ),dp z f ，同时将互异非

零常数 1 2 3, ,a a a 推广 ( ) ( ), 1, 2,3ja z j = 为互异的非常数多项式，故得到如下定理。 
定理 A:设 7n ≥ 为正整数， ( ),dP z f 为关于 f 的微分多项式且次数为 5d n≤ − ，定义为 (1)，

( )1,2,3jp j = 为非零常数，且 ( ) ( ), 1, 2,3ja z j = 为互异的非常数多项式且满足 ( ) ( )deg 1i j i jα α− ≥ ≠ 。其中

( )0a C a∈ ≠ ，如果 f 为方程 

( ) ( ) ( ) ( )1 2 32
1 2 3, e e ez z zn n

df af f P z f p p pα α α− ′′+ + = + +                      (4) 

的有限级超越亚纯解，并满足 ( ) ( ), ,N r f S r f= ，则以下情况成立。 

( ) e zf z C β γ+= ，其中 ,C β 为非零常数， ( ) ( ) ( )1 2 3, ,z z zα α α 均为一次多项式，且存在正整数 1 2 3, ,i i i 满

足{ } { }1 2 3, , 1, 2,3i i i = 及整数 ( )1j j d≤ ≤ 使得： 

( ) ( ) ( ) ( )
1 2 3

, 1 , ,i i in z n z j zβ α β α β α′ ′ ′= − = =
 

系数满足
1 2

1,n n
i iC p aC pβ−= = ，且 ( ) ( )3

3
, e e i zz

d iP z C p αβ = 。 
下面的例 1.1-1.3 说明满足定理 A 结论的亚纯解是存在的。 
例 1.1. ( ) ezf z = 为微分方程 

7 5 6 7e e ez z zf f f f+ ′ +′ ′ = +′+  
的解，此时 7n = ， 1 2 3 1p p p= = = ， ( )1 7z zα = ， ( )2 6z zα = ， ( )3 z zα = ， 1α = ， a 为任意非零 
常数， ( ),dP z f f ′′= ，满足定理 A 的结论。 

2. 引理 

引理 2.1 [9] (Clunie 引理)设 f 为方程 

( ) ( ) ( ), ,nf z P z f Q z f=  

的一个超越亚纯解，其中 ( ) ( ), , ,P z f Q z f 为关于 f 及其导数的多项式，系数为亚纯函数，记为

{ }| ,a I Iλ λ ∈ 为指标集 ，对所有的 Iλ∈ 满足 ( ) ( ), ,m r a S r fλ = 。如果 ( ),Q z f 关于 f 及其导数的总次数

n≤ 则 

( )( ) ( ), , ,m r P z f S r f=  
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对所有 r 的成立，至多需除去一个对数测度有限的例外集 E。 
引理 2.2 [10] (Cramer 法则)，考虑线性方程组 AX B= 其中 

11 12 1 1 1

21 22 2 2 2

1 2

, and .

n

n

n n nn n n

a a a x b
a a a x b

A X B

a a a x b

     
     
     = = =
     
     
     





     



 

如果 ( )det 0A ≠ ，那么该线性方程组有唯一解 

( ) ( )
( )

( )
( )

( )
( )

1 2
1 2

detdet det
, , , , , , ,

det det det
n

n
AA A

x x x
A A A

 
=   
 

   

其中 

11 12 1, 1 1 1, 1 1

21 22 2, 1 2 2, 1 2

1 2 , 1 , 1

,  1, 2, , .

i i n

i i n
i

n n n i n n i nn

a a a b a a
a a a b a a

A i n

a a a b a a

− +

− +

− +

 
 
 = = 
  
 

 

 



       

 

且  

引理 2.3[11]设 2n ≥ ， ( )jf z ( )1,2, ,j n=  为亚纯函数， ( )jg z ( )1,2, ,j n=  为整函数并满足以下条

件： 

(1) ( ) ( )

1
e 0j

n
g z

j
j

f z
=

≡∑ ； 

(2) 当1 j k n≤ < ≤ 时， ( ) ( )j kg z g z− 不为常数； 
(3) 当1 j n≤ ≤ ，1 h k n≤ < ≤ 时， ( )( ) ( ) ( )( )( ), , e , ,h kg z g z

jT r f z o T r r r E−= →∞ ∉ ，其中 ( )1,E ⊂ ∞ 具有有

限线性测度或对数测度，那么有 ( ) ( )0 1, ,jf z j n≡ =  成立。 
引理 2.4 [11] (Hadamard 分解定理)。设 ( )f z 为复平面上的有穷级亚纯函数，级为 ( )fρ ，如果在 0z =

附近，有  

( ) ( )1
1 0k k

k k ka z a zz af +
+= + + ≠ 其中  

则 

( ) ( ) ( )
( )

1

2

e ,Q zk P z
zf

P
z

z
=  

其中 ( ) ( )1 2,p z p z 分别为 ( )f z 非零点和极点的典型乘积， ( )Q z 为次数至多为 ( )fρ 的多项式。 

3. 定理 A 的证明 

假设方程(4)有一个亚纯解 ( )f z 满足 ( ) ( ), ,N r f S r f= ，记 

( ) ( )2 ,n n
df af Ph f z fz − ′+ +=  

则方程(4)可化为 

( ) ( ) ( ) ( )1 2 3
1 2 3e e ez z zp p ph z α α α= + +                              (5) 

易证 ( )f z 是超越的，否则，若 ( )f z 为有理函数，则方程(5)左边为有理函数，由于 ( ) ( ), 1, 2,3ja z j =
互异的非常数多项式，且 ( ) ( )deg 1i j i jα α− ≥ ≠ 。故

( ) ( )e 1,2,3ja z j = 为超越整函数，因此右边是超越函数，

左边是有理函数，矛盾。故 ( )f z 是超越亚纯函数。 
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接下来将证明 ( )f z 仅有有限多个零点，对方程(5)逐次求导两次，得到以下式子 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3
1 1 2 2 3 3e e ez z zh z p z p z p zα α αα α α′+′ ′ ′= +  

( ) ( )( )( ) ( ) ( ) ( )( )( ) ( ) ( ) ( )( )( ) ( )1 2 32 2 2
1 1 1 2 2 2 3 3 3( ) e e ez z zh z p z z p z z p z zα α αα α α α α α′′ ′′ ′ ′′ ′ ′′ ′= + + + + +  

故得到关于
( ) ( ) ( )1 2 3e ,e ,ez z zα α α

线性方程组： 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( )( ) ( ) ( ) ( )( )( ) ( ) ( ) ( )( )( ) ( )

1 2 3

1 2 3

1 2 3

1 2 3

1 1 2 2 3 3

2 2 2
1 1 1 2 2 2 3 3 3

e e e

e e e

( ) e e e

z z z

z z z

z z z

p p p

h z p z p z p z

h z p z z p z z p z

z

z

h α α α

α α α

α α α

α α α

α α α α α α

+ +

′ ′ ′ ′= +

′′ ′′ ′ ′′ ′ ′′ ′=



+ + + +

=


+

 +



     (6)  

其中
( )e j z

jX α= 由(6)得到系数矩阵为 

( )
( )( ) ( )( ) ( )( )

1 2 3

1 1 2 2 3 3

22 2
1 1 1 2 2 2 3 3 3

.

p p p
p p pA z

p p p

α α α

α α α α α α

 
 ′ ′ ′=  
 ′′ ′ ′′ ′ ′′ ′+ + + 
 

 

其行列式为 

( ) ( )
( )( ) ( )( ) ( )( )

1 2 3

1 1 2 2 3 30
22 2

1 1 1 2 2 2 3 3 3

det

p p p
p p pD z A z

p p p

α α α

α α α α α α

′ ′ ′= =
′′ ′ ′′ ′ ′′ ′+ + +

  

( )0D z 是一个有理函数，我们考虑 

( )
( )( ) ( )( )

2 3

2 2 3 31
22

2 2 2 3 3 3

h
h

h

p p
p pD z

p p

α α

α α α α

′ ′=
′′ ′ ′′′ ′+ +

′

′
 

接下来将分两种情况讨论： 
情形 1：若 ( )0 0D z ≡/   

由引理 2.2 得 

( ) ( )
( )

1 1

0

e z D z
D z

α =                                   (7) 

将 ( )1D z 按第一列展开得到： 

 ( ) ( ) ( ) ( )1 11 21 31D z M z h M z h M z h′ ′′= − +                        (8) 

其中 

( ) ( )( ) ( )( ) ( )( ) ( )( )( )

( ) ( )( ) ( )( ) ( )( ) ( )( )( )

( ) ( )

2 2 3 3 2 2
2211 2 3 2 3 3 3 2 2

2 2 2 3 3 3

2 3 2 2
2221 2 3 3 3 2 2

2 2 2 3 3 3

2 3
31 2 3 3 2

2 2 3 3

,

,

.

p p
M z p p

p p

p p
M z p p

p p

p p
M z p p

p p

α α
α α α α α α

α α α α

α α α α
α α α α

α α
α α

′ ′
′ ′′ ′ ′ ′′ ′= = + − +

′′ ′ ′′ ′+ +

′′ ′ ′′ ′= = + − +
′′ ′ ′′ ′+ +

′ ′= = −
′ ′
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由于 ( )deg 1i jα α− ≥ ， i jα α′ ′≠ ，故 ( )31 0M z ≠ 对(7)式微分得到 

( ) ( ) ( ) ( ) ( ) ( )
( )( )

1 1 0 1 0
1 2

0

e .z D z D z D z D z
z

D z
αα

′ ′−
′ =                         (9) 

结合(7)和(9)消去
( )1e zα
得到 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 0 1 0 1 1 0 .D z D z D z D z z D z D zα′ ′ ′− =                      (10) 

将(8)带入(10)得到 

1 11 11 21 21 31 31 .D M h M h M h M h M h M h′ ′ ′ ′ ′ ′ ′′ ′ ′′ ′′′= + − − + +  

将上式带入(10)整理得到关于 h 的三阶线性微分方程： 

( ) ( ) ( ) ( )1 2 3 4 0A z h A z h A z h A z h′ ′′ ′′′+ + + =                        (11) 

其中系数 ( )jA z 为多项式 

( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( )

1 11 0 11 0 1 0

2 11 21 0 21 0 1 0

3 21 31 0 31 0 1 0

4 31 0

,

,

,

.

A z M D M D D

A z M M D M D D

A z M M D M D D

A z M D

α

α

α

′ ′ ′= − +

′ ′ ′= − + +

′ ′ ′= − + − +

=

特别的 ( ) ( ) ( )4 31 0 0A z M z D z= ≡/   

将 ( ) ( )2 ,n n
dh f af f Pz z f− ′′+ += 带入(11)式整理得 

( ) ( ) ( ) ( ) ( )2 2 2 2
1 2 3 4

n n n n n n n nA f af f A f af f A f af f A f af f Q z− − − −′ ′′ ′′′′′ ′′ ′′ ′′+ + + + + + + =        (12) 

其中 ( ) ( )1 2 3 4d d d dQ z A P A P A P A P′ ′′ ′′′= − + + + 且 ( )Q z 是次数不超过 d 的微分多项式，为了简化(12)的左端，我

们引入以下记号： 

( )
( )

( )
( )

( )
( )2 2 2

1 2 35 5 5, ,
n n n n n n

n n n

f af f f
z z z

af f f af f

f f f
ψ ψ ψ

− − −

− − −

′′ ′′ ′′+ +′ ′′ ′′′+
= = =            (13) 

将(12)两边除以 5nf − 整理得到 

( ) ( )5 .n R zf zQ− =                                (14) 

其中 

( ) 5 3
1 1 2 1 3 2 4 3A f aA f f A AR Az ψ ψ ψ′+ + += ′ +                      (15) 

由于 6d n≥ − ，所以 5n d− ≥ ，结合(14)和引理 2.1 得 

( ) ( ), logm r R O r=  

另外由于 ( )f z 仅有有限个极点，因此我们有 

( ) ( ) ( ) ( ), , , log ,T r R m r R N r R O r= + =  

所以 ( )R z 是一个有理函数，接下来将分以下两种子情况： 
情形 1.1：如果 ( ) 0R z ≡/  
由(14)可得 ( )( ) ( )6n fRf Qz z− = .再次应用引理 2.1 得到 ( )( ) ( ), logm r fR z O r= ，同理 fR 极点有限，故

( ) ( ) ( ) ( ), , , logT r fR m r fR N r fR O r= + = ，即 fR 为有理函数，因此 ( )f fR R= 必为有理函数，与 ( )f z 为

超越亚纯函数矛盾。 

https://doi.org/10.12677/pm.2026.161026


方洋 
 

 

DOI: 10.12677/pm.2026.161026 244 理论数学 
 

情形 1.2：如果 ( ) 0R z ≡  
由(15)式可得 

( )5 3
1 1 2 1 3 2 4 3 .A f aA f f A A Aψ ψ ψ′′+ = − + +                          (16) 

我们断言 f 只能有有限多个零点，用反证法，假设 f 有无穷多个零点，任取一个零点 0z 设其重数 2p ≥ 即

( ) ( ) ( )0 0
pf z z z g z= − ，其中 ( )0 0g z ≠ ， 0z 且不为(16)式系数的零点，现在分析(16)式两边在 0z 的零点重

数。 
左边项 5

1A f 零点重数为 5p ，项 3
1aA f f ′′的零点重数为 4 2p − ，因为 2p ≥ ，所以 4 2 5p p− < ，

因此左

边整体的零点重数为 4 2p − 。

 右边项关键在 3ψ ，通过展开 ( )2n nf af f− ′′′′+ 可知，存在一项形如 ( )35nCf f f− ′ ′′ ( C 为非零常数)，除以
5nf − 后得到 ( )3C f f′ ′′，不含 f ，因此该项在 0z 处的零点重数为 4 5p − ，由于 ( )4 0A z ≡/ ，且其他项含 f

的正幂项，故右边整体重数不超过 4 5p − 。 
因为 2p ≥ ，所以 4 2 4 5p p− > − ，矛盾，当 1p = 时，左边重数为 2，右边重数为−1，左右两边零点重

数不相等，亦矛盾，从而 f 只有有限个零点。 
情形 2：若 ( )0 0D z ≡  
如果 ( )0 0D z ≡ ，此时系数矩阵的秩小于 3。但方程组(6)有解，因此增广矩阵的秩等于系数矩阵的秩，

因此， ( )0D z 的所有 3 3× 子式都为零，这意味着 ( )1 0D z ≡  

( )
( )( ) ( )( )

2 3

2 2 3 31
22

2 2 2 3 3 3

0

p p
p pD z

p p

h
h

h

α α

α α α α

′ ′= ≡
′′ ′ ′′ ′+ +

′

′′
 

 

将 ( )1 0D z ≡ 展开得到： 

( ) ( ) ( )11 21 31 0.M z h M z h M z h′ ′′− + =                           (17) 

将 ( ) ( )2 ,n n
dh f af f Pz z f− ′′+ += 带入(17)得： 

( ) ( ) ( ) ( )2 2 2 *
11 21 31 ,n n n n n nM f af f M f af f M f af f Q z− − −′ ′′′′ ′′ ′′+ − + + + =              (18) 

其中 ( ) [ ]*
11 21 31d d dQ z M P M P M P′ ′′= − − + ，其次数不超过 d  

定义： 

( )
( )

( )
( )2 2

1 24 4, .
n n n n

n n

f af f f af f
z z

f f
ξ ξ

− −

− −

′ ′′′′ ′′+ +
= =  

将其带入(18)整理得到： 

( ) ( )4 * * .nf R z Q z− =                                 (19) 

其中 ( )* 4 2
11 11 21 1 31 2R z M f aM f f M Mξ ξ′= + − +   

由于 5d n≥ − ，所以 4n d− ≥ ，结合引理 2.1 可得， ( )*R z 为有理函数，若 ( )* 0R z ≡/ ，则类似情形

1.1 方法推出 f 为有理函数，故矛盾，因此 ( )* 0R z ≡ ，则得到 
4 2

11 11 21 1 31 2.M f aM f f M Mξ ξ′+ = −                            (20) 

假设 f 有无穷多个零点，任取一个零点 1z 设其重数 2p ≥ 即 ( ) ( ) ( )1 1
pf z z z g z= − 。其中 ( )1 0g z ≠ ，

类似情形 1.2 的方法分析等式两边的零点重数不一样，故矛盾，因此 f 只有有限多个零点。 
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由于 f 是有限级超越亚纯函数，且只有有限多个零点和极点，由引理 2.4 (Hadamard 分解定理)， f
可以表示为以下形式： 

( ) ( ) ( )eP zf z q z=                                   (21) 

其中 ( )q z 是非零有理函数， ( )P z 是非常数多项式(若 ( )P z 为常数，则 f 为有理函数，矛盾)。 
将(21)带入(4)计算得： 

( )( ) ( ) ( ) ( )
32 12

1
e 2 e , e en P zn nP n P

d j
j

jq aq q q p qp q p P z q p α−−

=

′′ ′ ′ ′′ ′+ + + + + = ∑             (22) 

由于 dP 关于 f 及其导数的微分多项式，且 ( ) ( ) ( )eP zf z q z= ，其任意阶导数均可写成 e p 乘以关于

, , , , , ,q q p p p′ ′ ′′
 的有理函数，故 ( ), eP

dP z q 可表示为： 

( ) ( ) ( )

0
, e e

d
mP zP

d m
m

P z q zβ
=

= ∑                              (23) 

其中 mβ 为有理函数，结合(22)得到： 

( )( ) ( ) ( ) ( ) ( )
32 12

0 1
e 2 e e e

d
n P mP z zn nP n

m
m

j
j

j
q aq q q p qp q p z p αβ−−

= =

′′ ′ ′ ′′ ′+ + + + + =∑ ∑            (24) 

由引理 2.3 得， ( )1e ,e ,en PnP mP− 与 e iα 线性独立，除非指数成比例，因此存在正整数 1 2 3, ,i i i ，使得

{ } { }1 2 3, , 1, 2,3i i i = ，整数 ( )0j j d≤ ≤
 
满足

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2 31 2 3, 1 , .i i inP z z C n P z z C jP z z Cα α α= + − = + = +               (25) 

其中 1 2 3, ,C C C 为常数，对(25)分别求导，常数项消失，故得到： 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2 3

, 1 , .i i inP z z n P z z jP z zα α α′ ′ ′ ′ ′ ′= − = =                   (26) 

由此可得比例关系： 

( ) ( ) ( ) ( )
1 2 3

: : : 1 : .i i iz z z n n jα α α′ ′ ′ = −                            (27) 

由于比值为常数，此推出， ( ) ( ) ( )1 2 3, ,z z zα α α 均为一次多项式。故设 

( ) ( ) ( ) ( )
1 2 31 2 3, 1 , ,i i iz n z c z n z c z j z cα β α β α β= + = − + = +                 (28) 

其中 1 2 30, , ,c c cβ ≠ 为常数。 
代入(28)式第一个式子得到 

( ) ( )1 1, ,nP z n z c C P z zβ β γ= + + = +                            (29) 

其中 ( )1 1c C nγ = + 。 
将 ( )P z zβ γ= + 带入原方程并结合(28)匹配指数，比较系数得到： 

( ) ( ) ( ) ( )( ) ( ) 31 2
1 2 3

2e , e , e ,n n CC C
i i j iq z p aq z q z q z p z pβ β− −− −′= + = =              (30) 

由于 ( )nq z 为常数，故 ( )q z 必为常数，记 ( )q z C= (非零常数)，则 ( ) 0q z ′ = ，调整常数，可设 

1 2 3

1, , .n n
i i j iC p aC p pβ β−= = =                             (31) 

其中 ( )j zβ 是微分多项式 ( ), e z
dP z C β 中对应 e j zβ 项的系数，其他 0mβ ≡ ，故 

( ) ( )3
3

, e e .i zz
d iP z C p αβ =                                  (32) 
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至此，定理 A 完全得证。 

4. 结论 

本文研究了带导数项 2naf f− ′′的非线性微分方程，在 0a ≠ 且 ( )ja z 为非常数多项式的条件下，证明了

该方程存在有限极点的超越亚纯解，则解必为简单的指数函数， ( )ja z 必须退化为一次多项式，其导数之

间满足严格的比例关系: ( ): 1 :n n j− 。该结果推广了经典的 Li–Yang 型定理，此类方程也应用数学物理中

的若干模型，未来可探讨 3k > 的情形。 
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